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a b s t r a c t

This paper considers how to optimize reinsurance and investment decisions for an insurer who has aver-
sion to model ambiguity, who wants to take into consideration time-varying investment conditions via
mean reverting models, and who wants to take advantage of statistical arbitrage opportunities afforded
bymispricing of stocks.Wework under a complex realistic environment: The surplus process is described
by a jump–diffusionmodel and the financialmarket contains amarket index, a risk-free asset, and a pair of
mispriced stocks, where the expected return rate of the stocks and the mispricing follow mean reverting
stochastic processes which take into account liquidity constraints. The insurer is allowed to purchase
reinsurance and to invest in the financialmarket.We formulate an optimal robust reinsurance-investment
problem under the assumption that the insurer is ambiguity-averse to the uncertainty from the financial
market and to the uncertainty of the insured’s claims. Ambiguity aversion is an aversion to the uncertainty
taken by making investment decisions based on a misspecified model. By employing the dynamic
programming approach, we derive explicit formulae for the optimal robust reinsurance-investment
strategy and the optimal value function. Numerical examples are presented to illustrate the impact of
some parameters on the optimal strategy and on utility loss functions. Among our various practical
findings and recommendations, we find that strengthened market liquidity significantly increases the
demand for hedging from the mispriced market, to take advantage of the statistical arbitrage it affords.
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1. Introduction

Investments in financial markets provide an important mean
for any insurer to increase profits from the surplus process, while
reinsurance is key to helping the insurer avoid or transfer exces-
sive risk. Investments and reinsurance are therefore rightfully at-
tracting increasing attention from a growing number of insurance
mathematics scholars, and are becoming a popular topic in the
actuarial literature. For example, Schmidli (2002) considered the
optimal reinsurance-investment problemofminimizing ruin prob-
ability; Bäuerle (2005) studied the optimal reinsurance problem
with a mean–variance criterion; Bai and Guo (2008) focused on
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the optimal reinsurance-investment problem by maximizing ex-
ponential utility with a no-shorting constraint; Zeng and Li (2011)
considered the optimal time-consistent reinsurance-investment
problem with mean variance criterion; Gu et al. (2012) investi-
gated the optimal excess-of-loss reinsurance and investment prob-
lem with a Constant-Elasticity-of-Variance model.

However, most papers listed above assume the risky asset’s
appreciation rate is a constant or a deterministic function. This
goes against empirical stockmarket data aswidely understood and
noted bymany authors (see for instanceMerton (1980) and Rapach
and Zhou (2013)): in reality, appreciation rates are not constant,
andmore specifically, mean rates of return are more appropriately
modeled as being stochastic processes; they are thus often referred
to as stochastic risk premia. Typically, stochastic risk premium
processes are described by mean-reverting (MR) models, which
are given in the empirical literature on real market, see Chapter
20 in Cochrane (2001) and Rapach and Zhou (2013); they play an
important role in the portfolio by providing for the possibility of
time-varying investment opportunities. Thus, a MR risk premium
is seen as a valuable feature of the risky asset’s price. Baev and
Bondarev (2007), who discussed the ruin probability of an insurer,
studied the optimal investment problem for a riskymodel inwhich
the stock price has a stochastic risk premiumgiven by anOrnstein–
Uhlenbeck (OU) process, which is a special type of MR process.
The OU process has the advantage of being amenable to explicit
analyses in many cases because it is Gaussian. Liang et al. (2011)
aimed tomaximize the expected exponential utility of the terminal
wealth where again the instantaneous rate of the stock’s return
follows an OU process; they obtained the optimal reinsurance and
investment strategies. Gu et al. (2013) studied the optimal DC
pension plan under anOUmodel. Recently, Yi et al. (2015a) studied
dynamic portfolio selection with mean reversion describing the
stochastic risk premium, under additional current specificities of
Chinese and Hong Kong stock markets.

In this paper, we incorporate ambiguity aversion to study
the optimal robust reinsurance-investment problem, where the
stock’s stochastic risk premium follows a MR process. At the
moment, the use of MR risk premia is understudied in the im-
plementation of robust optimization. Going back to the original
work of Anderson et al. (2000) discussed below, and the seminar
work of Maenhout (2004) on homothetic robustness, we know
that robust optimization is helpful to account for the fact that
drift coefficients are very difficult to pin down. Also, we describe
several other papers above and below which use robustness this
way, to give some flexibility on the inability to estimate a con-
stant drift coefficient reliably. However, as stated above, if the
real problem is that mean rates of return are difficult to estimate
because they are actually stochastic, as in the case of stochastic
risk premia, allowing for an uncertain constant drift parameter in
an optimal investment problem does not capture the time-varying
aspect of investment conditions in the models’ specifications. In
this sense, using a MR process for the risk premium is crucial
for many stock markets where such a model feature is widely
accepted (see Poterba and Summers (1988), Fouque et al. (2000),
and Mukherji (2011) for empirical evidence). The paper by Yi et
al. (2015a) about dynamic portfolio selection with MR stochastic
risk premium takes this approach and combines it with an ac-
ceptance of modeling uncertainty, including for the parameters of
the MR stochastic risk premium; they address this uncertainty by
fully adopting robust optimization for all model drift parameters.
They only consider applications to uncertainty in financial market,
however. Our work picks up where they left off, by looking at
the implications for insurance-reinsurance-investment problems.
Moreover, we use jump-based and diffusive models, as is appro-
priate for distinguishing between event frequencies in the claims
process and the market processes. Thus, based on Yi et al. (2015a),

we incorporate market and claim stochasticity as well as modeling
uncertainty for both the insurance model and the financial market
model, and investigate an optimal robust reinsurance-investment
strategy for the insurer, where the appreciation rate of the stocks
and any possible arbitrage-inducingmispricing between two stock
prices are described by MR processes. We analyze the impact of
ambiguity aversion and mispricing on the optimal strategy.

We say a few more words in this introduction about ambiguity
and about mispricing, and how our work incorporates these fea-
tures in the reinsurance-investment problem under time-varying
market conditions.

Ambiguity was developed as a way of addressing modeling
uncertainty on themean rates of return and other drift parameters
in stochastic models for risky assets. Therefore, ambiguity has an
important impact on investment decisions. This idea has been
developed systematically as a method in quantitative investment
finance for portfolio selection and asset pricing with model un-
certainty or model misspecification. For example, Anderson et al.
(2000) introduced ambiguity aversion into the Lucas model, and
formulated alternative models. Uppal and Wang (2003) extended
Anderson et al. (2000), and developed a framework which allows
investors to consider the level of ambiguity. Maenhout (2004,
2006) optimized an inter-temporal consumption problem with
ambiguity, and derived closed-form expressions for the optimal
strategies. The resulting optimal decision schemes are legitimately
called Robust optimization because they are highly robust to drift
misspecifications. However these ideas should not be limited to
financial risk modeling, and the same ambiguity exists in the
expected surplus of insurers: some scholars have developed de-
cision optimization under ambiguity to discuss the optimal rein-
surance and investment problem. For instance, Zhang and Siu
(2009) and Korn et al. (2012) used stochastic differential games
to study the optimal reinsurance-investment problem with ambi-
guity; Yi et al. (2013, 2015a, b) studied the optimal proportional
reinsurance-investment strategy with ambiguity aversion under
expected utility maximization and mean–variance criterion. Li et
al. (2017) focused on another kind of reinsurance, the excess-of-
loss reinsurance, and discussed the reinsurance-investment prob-
lemwith ambiguity aversion. Pun andWong (2015) studied robust
investment-reinsurance optimization with multiscale stochastic
volatility. Zeng et al. (2016) studied the equilibrium strategy of a
robust optimal reinsurance-investment problem under the mean–
variance criterion. In all papers mentioned above, the (excess)
mean rates of return of the risky assets are assumed to be constant.
However, in real-world market as we mentioned, the appreciation
rate of the risky asset changes with time and with market condi-
tions.

In order to derive a more realistically implementable strat-
egy, our work incorporates these time-varying conditions into
our stochastic models for financial risk by using stochastic risk
premia, and allows for mispricing between stocks prices, all the
while studying the optimal reinsurance-investment question in
the framework of model drift ambiguity and its robust optimal
solutions.

Mispricing is a difference (discrepancy) between a pair of asset
prices, where these prices describe assets or contingent claims
which are identical or nearly identical. The asset/contingent-claim
values ought to have the same or close to the same price during a
same trading period but in reality they do not have the same price
in different financial markets, because of the existence of frictions
in markets which are not entirely mature. For a simple example,
the stock of Agriculture Bank of China is traded on Chinese stock
exchanges (Shanghai, Shenzhen) as shares A, and on theHongKong
stock exchanges as shares H. Usually, the price of share A is differ-
ent from that of share H. As explained in Gu et al. (2017), before
2015, China’s trading policy did not permit individual traders to
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purchase share H. In 2015, the Chinese government opened up
simultaneous investment in the mainland China and Hong Kong
financial market, which means that a mainland China investor is
allowed to invest in designated Hong-Kong stocks and vice-versa.
Because the class of investors able to take advantage of this new
situation is not universal, frictions remain, and price discrepan-
cies persists to this day. This creates arbitrage opportunities for
some Chinese investors. Under this condition, an insurer in China
wishing to invest some of her surplus process into risky assets
can typically make full use the price difference between share
A and share H in her investment strategy. A common strategy
to take advantage of this mispricing arbitrage is a ‘‘long-short’’
(L–S) strategy, which takes positions of equal size but opposite
signs either in portfolio weight or in number of shares, see Liu and
Longstaff (2004) and Jurek and Yang (2006). This type of strategy is
used as long-term arbitrage opportunities, since it does not need to
be modified or otherwise rebalanced over time, but that typically
ignores temporary diversification benefits. Liu and Timmermann
(2013) established a portfoliomaximization framework to take full
advantage of mispricing, showing that L-S is not always an optimal
strategy.

In our paper, in the framework of maximizing the insurer’s
exponential utility with mispricing, we establish that our optimal
investment strategy is no longer a pure L-S strategy, but rather
consists of two parts: one part is the L-S strategy, the other part
is what we call a common strategy, where the L-S strategy is
not optimal if and only if the liquidities of the two stock prices
are different. Our formulas show that the difference between the
positions on the twomarkets increases linearly with the difference
in liquidity parameters.

We adopt a relatively classical jump–diffusion model for our
insurance surplus process; our financial market is diffusive only,
and consists of the market index, one risk-free asset and a pair of
stocks with mispricing, where the appreciation rate of the stocks
and the mispricing are given by MR processes. Our goal is to max-
imize the expected exponential utility of the terminal wealth to
find an optimal strategy and corresponding optimal value function,
in as explicit a closed form as possible. This enables us to give
numerical exampleswhich show the impact of ambiguity aversion,
the appreciation rate, mispricing, and reinsurance, on the optimal
value function.

To summarize, compared to the existing literature, the con-
tributions of this paper are twofold. First, we consider stochastic
risk premia in the reinsurance and investment problem for an
ambiguity-averse insurer (AAI), whose aversion to model ambigu-
ity extends to the financial market, to the insurance business, and
to the phenomenon of mispricing. As such, our paper is the first
to allow the more realistic assumption of modeling uncertainty at
all these levels simultaneously for the insurer–investor. Second,
our AAI can take advantage of time-varying opportunities when
investing in the financial markets, in the context of her utility-
based preference to achieve an optimal investment and reinsur-
ance strategy. Third, we believe our paper is only the second paper
to study the joint impact of ambiguity aversion, mispricing, and
reinsurance (thiswas first done in (Gu et al., 2017), but is the first to
allow three different levels of ambiguity formodeling the diffusion
uncertainty in finance and in insurance, and for modeling insur-
ance jump certainty. In fact, this paper goes beyond the results of
Gu et al. (2017) by working with models with features closer to
real markets, where the insurance model is not independent of
the financial market, and where the excess return of the stocks
is no longer a constant, but follows a mean-reversion process to
account for time-varying investment opportunities. Within this
more complete modeling framework, some interesting results are
givenwhich cannot be obtained in the previous study. For instance,
the optimal investment strategy is separated into two parts: one is

a hedging strategy, and the other is common strategy. These allow
us to provide explanations on howmispricing, liquidity, and excess
returns affect the optimal investment strategy. Furthermore, our
studies are illustrated by evaluating various utility losses which
are specific to our framework. We find that for the sake of profits,
mispricing and reinsurance cannot be ignored, if the AAI wants to
avoid suffering large utility losses. Most notably, since we find that
the utility loss increases significantly with the investment horizon,
the effect of ignoring either mispricing or reinsurance will become
compounded for anything longer than the shortest investment and
business horizons. On the side of safety and/or caution, we find
that it is to the insurer’s significant advantage to take a more
conservative strategy to avoid the sudden risk of working with a
misspecified model when business and market conditions change.
All these conclusions are fully quantitative.

The remainder of this paper is organized as follows. The finan-
cial market and the insurance model are described in Section 2.
In Section 3 the optimal robust reinsurance-investment problem
with mispricing is established and solved. Section 4 provides the
numerical examples to illustrate our results and analyze the utility
losses which come from ignoring ambiguity aversion, mispricing,
or reinsurance, when managing an insurance surplus. Section 5
concludes this paper.

2. Economy and assumptions

Let (Ω,F, {Ft , 0 ≤ t ≤ T }, P) be a complete filtered probability
space, in which T > 0 is a fixed constant, representing time
horizon, {Ft , 0 ≤ t ≤ T } is a filtration, which describes the
flow of information over time and the σ−algebra Ft describes the
information available up to time t . We denote P as a reference
measure and suppose that all stochastic processes given in the
following are assumed to be adapted on this space.

2.1. Surplus process

Our insurer’s surplus process is given by the classical Cramér–
Lundberg (C–L) model with diffusion. In this jump–diffusion
model,without reinsurance and investment, the surplus is given by

dR(t) = pdt − d
Nt∑
i=1

Yi + σ1dB(t),

(see for example Bäuerle (2005)). This model has the following
well-known features, which we discuss here for completeness:

• p is a positive constant, representing the rate at which pre-
mia are paid;

• {Nt , 0 ≤ t ≤ T } is a Poisson process with intensity λ > 0,
which represents the number of claims from time 0 to time
t;

• Yi is the size (cost) of the ith claim; the sequence of claim
sizes Y1, Y2, . . . is a set of independent and identically dis-
tributed (i.i.d.) positive random variables; their distribution
F is assumed to have finite first and second moments µ∞

and σ 2
∞
;

• It follows from the above that
∑Nt

i=1Yi is a compound Poisson
process; this represents the total value of all claims against
the insurer in time interval [0, t];

• The stochastic process {B(t), 0 ≤ t ≤ T } is a standard Brow-
nian motion independent of N , representing the diffusion
risk of the surplus process;

• We assume that the premium rate p is computed based on
the expected value principlewith loading,whichmeans that
p = (1 + η)λµ∞, where η > 0 is the relative safety loading
of the insurer.

In this paper, the insurer needs to decide if she wants to
purchase proportional reinsurance to decrease business risk, or
acquire new business to increase her profits. In the case in which



96 A. Gu et al. / Insurance: Mathematics and Economics 80 (2018) 93–109

she chooses to purchase reinsurance, for each t ∈ [0, T ], she deter-
mines the quantity of reinsurance via the retention level, which is a
proportion q(t) ∈ [0,+∞).When q(t) ∈ (0, 1], thismeans she pur-
chases proportional reinsurance. Then for each claim, the insurer
only pays 100q% while the rest 100(1-q)% is paid by the reinsurer.
This reinsurance has a cost, andwe assume that the insurer diverts
part of each premium to the reinsurer. Since in this paper we as-
sume that the insurer receives premia continuously over time, the
same is assumed for the reinsurance premia paid to the reinsurer.
When q(t) ∈ (1,∞), since the insurer is retaining more than
100q% of risk, we interpret this by saying that she acquires new
business from the other insurers as a reinsurer herself. Overall,
we assume that reinsurance is not inexpensive, i.e., the reinsurer’s
safety loading θ is greater than the insurer’s safety loading η. We
use the expected value principle with loading to compute the
reinsurance premium. This implies that the reinsurance premium
rate must be (1 − q(t))(1 + θ )λµ∞. The reinsurance strategy can
thus be assimilated to the stochastic process {q(t) : t ∈ [0, T ]}

and one can easily show that the insurer’s resulting surplus process
satisfies the following stochastic dynamics:

dR(t) = [(1 + θ )q(t) + η − θ ]λµ∞dt − q(t)d
Nt∑
i=1

Yi + σ1dB(t)

= [(1 + θ )q(t) + η − θ ]λµ∞dt + σ1dB(t)

− q(t)
∫
R+

y(t)N(dt, dy), (1)

where N(·, ·) defined on Ω × [0, T ] × R+ is the Poisson random
measure corresponding to the Poisson process {Nt}. Denoting by
ν(dt, dy) = λdtdF (y), E[

∑Nt
i=1Yi] =

∫ t
0

∫
R+ yν(dt, dy), this ν repre-

sents the compensator of the random measure N(·, ·). Therefore,
the compensated measure Ñ of the compound Poisson process∑Nt

i=1Yi is Ñ(·, ·) = N(·, ·) − ν(·, ·). Finally, we can rewrite the
insurer’s surplus as:

dR(t) = [(1 + θ )q(t) + η − θ ]λµ∞dt

− q(t)
∫
R+

y(t)Ñ(dt, dy) − q(t)
∫
R+

y(t)λdtdF (y)

+ σ1dB(t).

2.2. Financial market

Our financial market consists of one risk-free asset, the market
index, and a pair of stocks with mispricing. We will assume (see
Eq. (2)) that the stocks’ appreciation rate a(t) is a stochastic variable
following an MR process. The price process of the risk-free asset is
expressed as the usual exponential function solving the elemen-
tary ordinary differential equation
dS0(t)
S0(t)

= rdt, S0(0) = s0,

where r > 0 is the risk-free interest rate. The price process of the
market index is expressed as
dPm(t)
Pm(t)

= (r + µm)dt + σmdZm(t),

where the market risk premium µm and the market volatility σm
are positive constants, and {Zm(t)} is a standard Brownian motion
on (Ω,F, P). The price processes of the pair of stocks satisfy the
following the stochastic differential equations
dP1(t)
P1(t)

= (r + a(t))dt + σdZt + bdZ1t − l1X(t)dt, P1(0) = P10,

dP2(t)
P2(t)

= (r + a(t))dt + σdZt + bdZ2t + l2X(t)dt, P2(0) = P20,
(2)

where l1, l2, σ , b are constant parameters. The term σdZt describes
the common risk, the term bdZit describes the idiosyncratic risk of

stock i, and a(t) is the aforementioned premium (i.e., the excess
return) for the common risk, whose MR dynamics are given by

da(t) = n(m − a(t))dt + σadZa(t), a(0) = a0, (3)

where m is the long-run mean of the risk premium, and n is
the degree of mean reversion (or mean-reversion rate). The term
liX(t)dt shows the effect of mispricing on the ith stock’s price,
where X(t) is the pricing error or mispricing between two stocks,
and is defined as

X(t) = ln
P1(t)
P2(t)

.

Based on Eq. (2), using standard Itô’s calculus, we find that the
dynamics of the mispricing X(t) satisfy the following equation

dX(t) = −(l1 + l2)X(t)dt + bdZ1t − bdZ2t
= (l1 + l2)(0 − X(t))dt + bdZ1t − bdZ2t , X(0) = x0. (4)

Thus Eq. (4) shows thatX is also aMRprocess; it shows in particular
that the long-run mean of the pricing error is 0, and its mean-
reversion rate is (l1 + l2). This also shows that investment oppor-
tunities are time-dependent. Note that l1 and l2 in Eq. (4) cannot
equal zero at the same time. Otherwise, the pair of stocks would
represent a pair with the same expected return rate but higher risk
than themarket index, which is not realistic. For the sake of conve-
nience, we assume that l1 + l2 > 0, the same assumption is found
in Liu and Timmermann (2013). Switching the direction of the
inequality is equivalent to switching the roles of the two stocks. It is
sometimes helpful to view l1 and l2 as liquidities. Indeed, mispric-
ing typically occurs when markets contain frictions, which in turn
canbedue to inadequate liquidities, and in the case that the liquidi-
ties l1 and l2 are low, we will have a mispricing process X(t) which
takes longer to revert back to the zero mean, which is consistent
with the idea that more friction accompanies increased illiquidity.

Note that ρ is the correlation coefficient between the Brownian
motions {Zt} and {B(t)}, and ρ0 is the correlation coefficient be-
tween {Zm(t)} and {Za(t)}. Moreover, there exist Brownianmotions
{B̂(t)} and {Z0(t)} satisfying the following equations:

dZt = ρdB(t) + ρ̂dB̂(t), dZa(t) = ρ0dZm(t) + ρ̂0dZ0(t),

where ρ, ρ0 ∈ [−1, 1], ρ̂ =

√
1 − ρ2, and ρ̂0 =√

1 − ρ2
0 . Moreover, we assume all standard Brownian motions

{Zm(t)}, {Bt}, {B̂(t)}, {Z1t}, {Z2t} and {Z0(t)} are independent each
other and all are independent of N(dy, dt).

In addition to reinsurance, the insurer can invest in our financial
market. Thus we denote by u(t) = (πm(t), π1(t), π2(t)) the cor-
responding investment strategy, where πm(t) shows the amount
of the wealth invested in the market index, and π1(t), and π2(t)
denote the amounts invested in the two stocks, respectively, hence
the remainder, R(t)−πm(t)−π1(t)−π2(t), is invested in the risk-
free asset.

2.3. Wealth process

We denote the whole reinsurance-investment strategy by π :=

{π (t), 0 ≤ t ≤ T } = {(q(t), u(t)), t ∈ [0, T ]}. As a result
of adopting the strategy π , the insurer’s corresponding reserve
{Wπ (t)}0≤t≤T satisfies the following stochastic dynamics:

dWπ (t) = [Wπ (t)r + πm(t)µm + a(t)(π1(t) + π2(t))
+ X(t)(π2(t)l2 − π1(t)l1)]dt
+ σ (π1(t) + π2(t))(ρdB(t) + ρ̂dB̂(t))
+ b(π1(t)dZ1t + π2(t)dZ2t ) + σ1dB(t)
+πm(t)σmdZm(t) + (η − θ + (1 + θ )q(t))λµ∞dt

− q(t)
∫
R+

y(t)N(dy, dt),

(5)

where Wπ (0) = w0 and w0 is the insurer’s initial wealth.
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3. Robust problem with mispricing

3.1. Utility function

In any classical reinsurance-investment quantitative setup, the
insurer is assumed to be ambiguity-neutral in her investment
decisions (i.e., is an ANI): this means that she is fully confident
that the model determined by statistical estimation or calibration
is the correct model; in this paper we refer to this model as
the reference model. Under the so-called constant-absolute-risk-
averse (CARA) utility assumption, the ANI maximizes her expected
terminal wealth, whichwe thus express as the following optimiza-
tion problem:

max
π∈Π0

EP
0 [U(Wπ (T ))] = max

π∈Π0
EP
0

[
−

1
γ

exp{−γWπ (T )}
]
, (6)

where γ > 0 is the so-called absolute risk aversion coefficient,
Π0 is the set of admissible strategies which the ANI considers,
and EP

t [·] = EP
[·|Ft ] is a short-hand notation for the conditional

expectation at time t under the reference probability measure P ,
given all the available information up to that time.

Deviating from this traditional model, we discuss the optimiza-
tion problem for the Ambiguity-Averse Insurer (AAI), who calls
into question, or is skeptical about, the veracity of the reference
model. In other words, the AAI does not have full confidence in
the reference model, for instance because she is concerned about
uncertainty on the parameters which may be due to a misspeci-
fication error. She recognizes that this model is only an approxi-
mation of reality and she wishes to take into consideration some
alternative models, which preferably do not deviate very far from
the reference model. We will have more to say below about what
is meant by ‘‘too far’’ when we discuss the penalization term in
the homothetic robustness framework. Every alternative model is
characterized by a stochastic process ϵ (ϵ will be defined below)
and the associated probability measure Q , which is equivalent to
the reference measure P . This has the effect of allowing ambiguity
on all drift parameters in the model. We denote this class of
probability measures by Q :

Q = {Q |Q ∼ P}.

According to the standard representation of the Radon–
Nikodym derivative of any element Q of Q with respect to P , we
know that towrite down any such equivalentmeasureQ , there ex-
ists a progressively measurable process ϵ = (ϕ(t), φ(t)), such that
dQ
dP

= ξ (T )

where ξ (t) has the following form:

ξ (t) = exp
{
−

∫ t

0
ϕ(t)dZt −

1
2

∫ t

0
∥ϕ2(t)∥dt

−

∫ t

0
h(t)dB(t) −

1
2

∫ t

0
h2(t)dt

+

∫ t

0

∫
∞

0
lnφ(t)N(dt, dy)

+

∫ t

0

∫
∞

0
(1 − φ(t))ν(dy, dt)

}
(7)

where ϕ(t) = (hm(t), ĥ(t), h1(t), h2(t), h0(t)), ∥ϕ(t)∥2
= h2

m(t) +

ĥ2(t) + h2
1(t) + h2

2(t) + h2
0(t) and dZt = (dZm(t), dB̂(t), dZ1t , dZ2t ,

dZ0(t)) where the various stochastic processes introduced here
will have role revealed shortly below. As we mentioned, we are
allowed to consider ambiguity in all drift parameters. In order to
get results which are explicit and yield manageable expressions,
we assume that, as far as the insurance model goes, the measure Q

is different from the original measure P only in the intensity of the
claim arrivals; we assume that the claim size distribution F is the
same under both measures. Here it turns out that λφ is the claim
intensity of the Poisson process under the newmeasureQ . Accord-
ing toGirsanov’s Theorem, theBrownianmotionsmentioned in our
model can be defined under the equivalent measure Q as follows

dZQ
0 (t) = dZ0(t) + h0(t)dt, dB̂Q

t = dB̂t + ĥ(t)dt,

dZQ
1t = dZ1t + h1(t)dt, dZQ

2t = dZ2t + h2(t)dt,

dZQ
m (t) = dZm(t) + hm(t)dt, dBQ (t) = dB(t) + h(t)dt.

(8)

Moreover, under the measure Q ,

ÑQ (dt, dy) = N(dy, dt) − λQ dF (y)dt = N(dy, dt) − λφ(t)dF (y)dt

is amartingale. In the followingdefinition for admissible strategies,
reference is made to the worst-case measure Q ∗. This measure
will be defined as soon as we formulate the robust optimization
problem, since it contains an infimum over all measures Q in Q;
we will see that this infimum is attained, denoting the argmin by
Q ∗ . It is in this sense that the robust optimization problem can be
solved using admissible strategies.

Definition 3.1. A strategy π = {q(t), πm(t), π1(t), π2(t)}t∈[0,T ] is
said to be admissible, if

(1) ∀t ∈ [0, T ], q(t) ∈ [0,∞);
(2)π is predictablewith respect to {Ft} and EQ ∗

[
∫ T
0 ∥v(t)∥2dt] <

∞, where ∥v(t)∥2
= q2(t) + π2

m(t) + π2
1 (t) + π2

2 (t);
(3) ∀(t, w, x, a) ∈ [0, T ]×R×R×R, Eq. (5) has a unique strong

solution {Wπ (t)}t∈[0,T ] with EQ ∗

t,w,x,a[U(Wπ (t))] < ∞, where Q ∗ is
the probability measure in the worst case of our model.

Denote by Π the set of all admissible strategies. Similarly, we
can obtain the set of admissible strategies Π0, Π̂ and Π̃ with
no ambiguity aversion, no mispricing and no reinsurance, respec-
tively.

Based on the admissible strategy π ∈ Π , the surplus process of
the insurer under measure Q has the following stochastic dynam-
ics:

dWπ (t) = [Wπ (t)r + a(t)(π1(t) + π2(t)) + X(t)(π2(t)l2

−π1(t)l1) + πm(t)µm

−πm(t)σmhm(t) − σ (π1(t) + π2(t))(ρh(t)

+ ρ̂ĥ(t)) − b(π1(t)h1(t)

+π2(t)h2(t))]dt − σ1h(t)dt + πm(t)σmdZQ
m (t)

+π1(t)bdZ
Q
1t + π2(t)bdZ

Q
2t

+ σ1dBQ (t) + (π1(t) + π2(t))σ (ρdBQ (t) + ρ̂dB̂Q (t))

+ [η − θ + (1 + θ )q(t)]λµ∞dt

− q(t)
∫
R+

y
(
ÑQ (dt, dy) + λφ(t)dF (y)dt

)
.

(9)

The idea of robust optimization starts with the realization that
the reference model is only an approximation, determined by the
ANI, of the truemodel. Therefore, the AAIwants to follow a strategy
which might be robust to how the misspecified reference model
might be compared with the true model, but even though she
is suspicious of the reference model, she wants to avoid giving
inordinate weight to alternatives which are far from her reference
model, being reluctant to deviate too much from that model. Thus,
in the process of setting the model, we use a measure of the
distance between the reference model and the alternative models
to penalize any deviations. Therefore, the alternative measures Q
and their penalizations represent a trade-off between not being
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completely dependent on the reference model and, at the same
time, not deviating from it too much. Using the surplus process
(9) as the basis for a quantity to optimize, we formulate a robust
control problem, inspired by Maenhout (2004), as follows:

V (t, w, x, a) = sup
π∈Π

inf
Q∈Q

EQ
t,w,x,a

{
−
δ

γ
e−γWπ (T )

+

∫ T

t

( 1
2∥ϕ(s)∥

2

ψ1(s)
+

1
2h

2(s)
ψ2(s)

+
(φ(s) lnφ(s) − φ(s) + 1)λ

ψ3(s)

)
ds

}
, (10)

where EQ
t,w,x,a = EQ

[·|W (t) = w, X(t) = x, a(t) = a] and
the second term in (10) represents the deviation from the refer-
ence measure, where ψ1(t), ψ2(t) and ψ3(t) stand for preference
parameters for the ambiguity aversion in modeling the financial
market, the uncertainty of the insurance model, and the negative
claim of the insurer. Typically, ψ1(t), ψ2(t) and ψ3(t) are to be
taken as measures of the information the insurer has about the
true model; the greaterψ1(t), ψ2(t) andψ3(t) are, the less insurer
knows about this model, the less faith she has in the reference
model, and the more her worst case model will be allowed to
deviate from the reference model. Note that V (t, w, x, a) < 0
for the definition 3.1, which can be derived easily from Theorem
3 in Honda and Kamimura (2011). For convenience, similarly to
Maenhout (2004), we assume thatψ1(t), ψ2(t) andψ3(t) are non-
negative state-dependent functions having the following form

ψi(t) = −
αi

γV (t, w, x, a)
, i = 1, 2, 3, (11)

where α1 ≥ 0, α2 ≥ 0 and α3 ≥ 0 represent the insurer’s
ambiguity-aversion levels to the financial diffusion uncertainty,
the insurance diffusion uncertainty, and the insurance claim jump
uncertainty, respectively. When α1 = α2 = α3 ≡ 0, the model
(10) degenerates to the ANI model. Proposition 3.2 shows the
corresponding results about this model.

In what follows in this section, we solve the optimization prob-
lem (10) and derive the optimal value function and the optimal
strategy.

As we said, the AAI aims to obtain robustness by seeking the
optimal strategy under a worst-case scenario. To be precise, for
any fixed admissible strategy π ∈ Π , one seeks a worst case
measure Q ∗(π ) ∈ Q which minimizes the utility for that strategy,
and then an optimal robust strategy is attained by maximizing
the resulting worst-case utility over all admissible strategies. This
scheme translates mathematically into the following problem for
exponential utility:

sup
π∈Π

EQ ∗(π )
t,w,x,a

{
−

1
γ
e−γWπ (T )

+

∫ T

t

( 1
2∥ϕ(s)∥

2

ψ1(s)
+

1
2h

2(s)
ψ2(s)

+
(φ(s) lnφ(s) − φ(s) + 1)λ

ψ3(s)

)
ds

}
.

Let C1,2,2,2([0, T ] × R × R × R) denote the class of functions which
are continuously differentiable w.r.t. t on [0, T ], and twice contin-
uously differentiable w.r.t. w, x, a on R, respectively. According to
the robust Hamilton–Jacobi–Bellman equation (HJB for short, see
Anderson et al. (2003), Maenhout (2006) and the properties of
jump terms in such HJB (see, for example, Bäuerle (2005)), for any
J(t, w, x, a) ∈ C1,2,2,2([0, T ] × R × R × R), we have

sup
π∈Π

inf
ϕ,φ

{
Aπ,ϕ,φ J(t, w, x, a) −

γ J
α1

1
2
∥ϕ(t)∥2

−
γ J
α2

1
2
h2(t) −

γ Jλ
α3

(φ(t) lnφ(t) − φ(t) + 1)
}

= 0
(12)

where

Aπ,ϕ,φ J(t, w, x, a) = Jt + Jw(η − θ + (1 + θ )q(t))λµ∞

+ Jw[wr + a(t)(π1(t) + π2(t))

− σ (ρh(t) + ρ̂ĥ(t))(π1(t) + π2(t))

− b(π1(t)h1(t) + π2(t)h2(t))

+ x(π2(t)l2 − π1(t)l1) − σ1h(t) + πm(t)µm − πm(t)σmhm(t)]

+
1
2
Jww

[
σ 2(π1(t) + π2(t))2 + b2(π2

1 (t)

+π2
2 (t)) + π2

m(t)σ
2
m + σ 2

1

+ 2σ1σρ(π1(t) + π2(t))
]
+ Jxxb2 +

1
2
Jaaσ 2

a + Jwaσaρ0πm(t)σm

+ Jwxb2(π1(t) − π2(t)) − Jx[(l1 + l2)x + bh1(t) − bh2(t)]

+ Ja(n(m − a(t)) − σaρ0hm(t) − σaρ̂h0(t))

+φ(t)λEQ
[J(t, w − q(t)Y , x, a) − J(t, w, x, a)]

with the boundary condition J(T , w, x, a) = −
1
γ
exp{−γw}, where

Jt , Jw, Jww, Jx, Jxx, Jwx, Ja and Jaa represent the value function’s par-
tial derivative w.r.t. the corresponding variables.

In order to solve (12), we attempt an ansatz by assuming the
solution J(t, w, x, a) has the following form:

J(t, w, x, a) = −
1
γ

exp{−γ [P(t)w +
1
2
A1(t)x2 + A2(t)x + A0(t)

+
1
2
B1(t)a2 + B2(t)a + B3(t)ax]}. (13)

From the boundary condition J(T , w, x, a) = −
1
γ
exp{−γw}, we

have P(T ) = 1, Ai(T ) = 0, Bj(T ) = 0, i = 1, 2, 0, j = 1, 2, 3. A
direct calculation yields the partial derivatives

Jt = −γ (P ′(t)w +
1
2
A′

1(t)x
2
+ A′

2(t)x + A′

0(t)

+
1
2
B′

1(t)a
2
+ B′

2(t)a + B′

3(t)ax)J,

Jw = −γ P(t)J, Jww = γ 2P(t)2J,

Jx = −γ J(A1(t)x + A2(t) + B3(t)a),

Jxx = (γ 2(A1(t)x + A2(t) + B3(t)a)2 − A1(t)γ )J,

Jwx = γ 2P(t)(A1(t)x + A2(t) + B3(t)a)J,

Jwa = γ 2P(t)(B1(t)a + B2(t) + B3(t)x)J,

Ja = −γ (B1(t)a + B2(t) + B3(t)x)J,

Jaa = (γ 2(B1(t)a + B2(t) + B3(t)x)2 − γ B1(t))J
Jw
Jww

= −
1

γ P(t)
,

Jwx

Jww
=

A1(t)x + A2(t) + B3(t)a
P(t)

,

J(t, w − qY , x, a) − J(t, w, x, a)

= J(t, w, x, a)(exp{γ P(t)qY } − 1),

(14)

where J = J(t, w, x, a).
According to the first-order conditions for hm(t), ĥ(t), h1(t),

h2(t), h0(t) and h(t), we have

−Jwπm(t)σm − Jaσaρ0 −
γ J
α1

hm = 0,

−Jw(π1(t) + π2(t))σ ρ̂ −
γ J
α1

ĥ(t) = 0,

−Jwbπ1(t) − Jxb −
γ J
α1

h1(t) = 0,

−Jwbπ2(t) + Jxb −
γ J
α1

h2(t) = 0,

−Jaσaρ̂0 −
γ J
α1

h0(t) = 0,

−Jw(σ1 + (π1(t) + π2(t))σρ) −
γ J
α2

h(t) = 0.
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By solving the equations above, it follows that

h∗

m(t) = −
α1

γ J
(Jwπm(t)σm + Jaσaρ0) = α1(πm(t)σmP(t)

+ σaρ0(B1(t)a + B2(t) + B3(t)x));

ĥ∗(t) = −
α1

γ J
(π1(t) + π2(t))σ ρ̂Jw = α1σ ρ̂P(t)(π1(t) + π2(t));

h∗

1(t) = −
α1

γ J
b(π1(t)Jw + Jx) = α1b(π1(t)P(t)

+ A1(t)x + A2(t) + B3(t)a);

h∗

2(t) = −
α1

γ J
b(π2(t)Jw − Jx) = α1b(π2(t)P(t)

− A1(t)x − A2(t) − B3(t)a);

h∗

0(t) = −
α1

γ J
Jaσaρ̂0 = α1σaρ̂0(B1(t)a + B2(t) + B3(t)x);

h∗(t) = −
α2

γ J
(σ1 + (π1(t) + π2(t))σρ)Jw

= α2P(t)(σ1 + (π1(t) + π2(t))σρ).

(15)

Similarly, by the first-order condition for φ(t), i.e.,

λEP
[J(t, w − q(t)Y , x, a) − J(t, w, x, a)]

−
1
α3
γ J(t, w, x, a)λ lnφ(t) = 0,

which gives

φ∗(t) = exp{
α3

γ J(t, w, x, a)
EP

[J(t, w − q(t)Y , x, a) − J(t, w, x, a)]}

= exp{
α3

γ
EP

[eP(t)q(t)γ Y − 1]}. (16)

Therefore, we obtain the worst case measure Q ∗ which is deter-
mined by ϵ∗

= (ϕ∗, h∗, φ∗) and ϕ∗
= (h∗

m, ĥ
∗, h∗

1, h
∗

2, h
∗

0).
In the following, we seek the optimal robust reinsurance-

investment strategy. Substituting (15) and (16) into the HJB equa-
tion (12), we have

sup
π∈Π

{
Jt + Jw

[
(η − θ + (1 + θ )q(t))λµ∞

+wr + x(π2(t)l2 − π1(t)l1)

+ a(π1(t) + π2(t)) + πm(t)µm
]

+
1
2
Jww

[
π2
m(t)σ

2
m + (π2

1 (t) + π2
2 (t))b

2
+ σ 2

1

+ (π1(t) + π2(t))2σ 2
+ 2σ1σρ(π1(t) + π2(t))

]
+ Jxxb2 − Jx(l1 + l2)x

+ Jwxb2(π1(t) − π2(t)) + Jan(m − a) +
1
2
Jaaσ 2

a

+ Jwaσaρ0πm(t)σm
+
α1

2γ J
(Jwπm(t)σm + Jaσaρ0)2

+
α1

2γ J
J2a σ

2
a ρ̂

2
0
α1σ

2ρ̂2J2w(π1(t) + π2(t))2

2γ J

+
α1b2(Jx + Jwπ1(t))2

2γ J
+
α1b2(Jx − Jwπ2(t))2

2γ J

+
α2J2w(σ1 + (π1(t) + π2(t))σρ)2

2γ J

+
γ Jλ
α3

(φ∗(t) − 1)
}

= 0.

(17)

Differentiating Eq. (17) w.r.t. q(t) implies

Jw(1 + θ )λµ∞ +
1
α3
γ Jλ

∂φ∗(t)
∂q(t)

= 0.

According to (14) and (16), we know that the optimal reinsurance
strategy q∗(t) satisfies the following equation

(1 + θ )µ∞

= exp{
α3

γ
EP

[eP(t)q
∗(t)γ Y (t)

− 1]}EP
[Y (t)eP(t)q

∗(t)γ Y (t)
]. (18)

We assert that q∗(t) > 0. If thiswere not true, then eP(t)q
∗(t)γ Y (t) < 1

and

exp{
α3

γ
EP

[eP(t)q
∗(t)γ Y (t)

− 1]}EP
[Y (t)eP(t)q

∗(t)γ Y (t)
]

< EP
[Y (t)] = µ∞ < (1 + θ )µ∞.

This would cause a contradiction with (18).
According to the first-order conditions for πm(t), π1(t) and

π2(t), we have

π∗

m(t) = e−r(T−t)
[

µm

σ 2
m(α1 + γ )

−
σaρ0

σm
(B1(t)a + B2(t) + B3(t)x)],

π∗

1 (t) =
1

P(t)
[(
1
K
a) + (

l2 − l1
2K

−
l1 + l2

2(α1 + γ )b2
)x

− (A1(t)x + A2(t) + B3(t)a)] −
(α2 + γ )σ1σρ

K
,

π∗

2 (t) =
1

P(t)
[(
1
K
a) + (

l2 − l1
2K

+
l1 + l2

2(α1 + γ )b2
)x

+ (A1(t)x + A2(t) + B3(t)a)] −
(α2 + γ )σ1σρ

K
where K = 2σ 2(γ + α1ρ̂

2
+ α2ρ

2) + b2(α1 + γ ).
Inserting q∗(t) and π∗

m(t), π
∗

1 (t), π
∗

2 (t) into (17) and identifying
the coefficient of themonomialsw and x2, x, a2, a, ax as zero, we
have

γ P ′(t) + γ P(t)r = 0; (19)

−
1
2
A′

1(t) +
1
2
σ 2
a (α1 + γ )ρ̂2

0B
2
3(t)

−
1
4

( (l2 − l1)2

K
+

(l1 + l2)2

(α1 + γ )b2
)

= 0, (20)

−A′

2(t) + (α1 + γ )σ 2
a ρ̂

2
0B2(t)B3(t)

+ (
µmσaρ0

σm
− nm)B3(t) +

α2σ1σρP(t)(l2 − l1)
K

= 0,
(21)

−
1
2
B′

1(t) +
1
2
σ 2
a (α1 + γ )ρ̂2

0B
2
1(t) + nB1(t) −

1
K

= 0, (22)

−B′

2(t) + σ 2
a (α1 + γ )ρ̂2

0B1(t)B2(t) + nB2(t)

+ (
µmσaρ0

σm
− nm)B1(t) +

2(α2 + γ )σ1σρP(t)
K

−
2b2(α1 + γ )γ σ1σρP(t)

K 2 = 0,

(23)

−B′

3(t) + nB3(t) + (α1 + γ )σ 2
a ρ̂

2
0B1(t)B3(t) −

l2 − l1
K

= 0, (24)

−A′

0(t) +
1
2
(α1 + γ )σ 2

a ρ̂
2
0B

2
2(t) − b2A1(t)

+ (
µmσaρ0

σm
− nm)B2(t) −

1
2
σ 2
a B1(t)

−
µ2

m

2σ 2
m(α1 + γ )

+
(α2 + γ )(γ − α2)σ 2

1 σ
2ρ2P2(t)

K
+

1
2
σ 2
1 (α2 + γ )P2(t)

− (η − θ + (1 + θ )q∗(t))λµ∞P(t)

+
λ

α3
(φ∗(t) − 1) = 0.

(25)



100 A. Gu et al. / Insurance: Mathematics and Economics 80 (2018) 93–109

Taking into account the boundary conditions P(T ) = 1 and Ai(T ) =

0, i = 0, 1, 2, Bj(T ) = 0, j = 1, 2, 3, and solving the differential
equations (19)–(25) we obtain the explicit expressions of P(t),
A1(t), A2(t), A0(t), B1(t), B2(t) and B3(t) as follows

P(t) = er(T−t),

A1(t) = −σ 2
a (α1 + γ )ρ̂2

0

∫ T

t
B2
3(s)ds

+
T − t
2

(
(l2 − l1)2

K
+

(l1 + l2)2

(α1 + γ )b2
),

A2(t) = −σ 2
a (α1 + γ )ρ̂2

0

∫ T

t
B2(s)B3(s)ds

− (
µmσaρ0

σm
− nm)

∫ T

t
B3(s)ds

−
α2σ1σρP(t)(l2 − l1)

K
(T − t),

(26)

A0(t) = −
(α1 + γ )σ 2

a

2
ρ̂2
0

∫ T

t
B2
2(s)ds + b2

∫ T

t
A1(s)ds

− (
µm

σm
σaρ0 − nm)

∫ T

t
B2(s)ds

+
σ 2
a

2

∫ T

t
B1(s)ds +

∫ T

t
(

µ2
m

2σ 2
m(α1 + γ )

−
(α2 + γ )(γ − α2)σ 2

1 σ
2ρ2P2(t)

K

−
1
2
σ 2
1 (α2 + γ )P2(t))dt

+ λµ∞

∫ T

t
(η − θ + (1 + θ )q∗(s))er(T−s)ds

−
λ

α3

∫ T

t
(φ∗(s) − 1)ds,

B1(t) =
e−ϵ1(T−t)

− e−ϵ2(T−t)

( e
−ϵ2(T−t)

ϵ2
−

e−ϵ1(T−t)

ϵ1
)(α1 + γ )ρ̂2

0σ
2
a

,

B2(t) = −e−
∫ T
t (n+(α1+γ )σ2

a ρ̂
2
0B1(s))ds

∫ T

t
(
µmσaρ0

σm
− nm)B1(s)

× e
∫ T
s (n+(α1+γ )σ2

a ρ̂
2
0B1(u)duds,

− e−
∫ T
t (n+(α1+γ )σ2

a ρ̂
2
0B1(s))ds

∫ T

t

2σ1σρP(s)
K

(α2 + γ )

× e
∫ T
s (n+(α1+γ )σ2

a ρ̂
2
0B1(u)duds,

+ e−
∫ T
t (n+(α1+γ )σ2

a ρ̂
2
0B1(s))ds

∫ T

t

2σ1σρP(s)b2(α1 + γ )γ
K 2

× e
∫ T
s (n+(α1+γ )σ2

a ρ̂
2
0B1(u)duds,

B3(t) = e−
∫ T
t (n+(α1+γ )σ2

a ρ̂
2
0B1(s))ds

×

∫ T

t

l2 − l1
K

e
∫ T
s (n+(α1+γ )σ2

a ρ̂
2
0B1(u)duds, (27)

where ϵ1 = n +

√
(n2 +

2σ2
a (α1+γ )ρ̂20

K ) and ϵ2 = n −√
(n2 +

2σ2
a (α1+γ )ρ̂20

K ).
Therefore, the optimal investment strategy can be given by

π∗

m(t) = e−r(T−t)
[

µm

σ 2
m(α1 + γ )

−
σaρ0

σm
(B1(t)a + B2(t) + B3(t)x)],

π∗

1 (t) = e−r(T−t)
[(
1
K
a) + (

l2 − l1
2K

−
l1 + l2

2(α1 + γ )b2
)x

− (A1(t)x + A2(t) + B3(t)a)] −
(α2 + γ )σ1σρ

K
,

π∗

2 (t) = e−r(T−t)
[(
1
K
a) + (

l2 − l1
2K

+
l1 + l2

2(α1 + γ )b2
)x

+ (A1(t)x + A2(t) + B3(t)a)] −
(α2 + γ )σ1σρ

K
.

(28)

Evidently, the amounts invested in the financial market are
linear function of x and a. Moreover, the optimal strategy invested
in the stocks can be divided into two parts for each stock. Let

π∗

L−S(t) = e−r(T−t)
[

l1 + l2
2(α1 + γ )b2

x

+ (A1(t)x + A2(t) + B3(t)a)], (29)

and

π∗

CM (t) = e−r(T−t)
[
1
K
a +

l2 − l1
2K

x] −
(α2 + γ )σ1σρ

K
. (30)

Then, we have

π∗

1 (t) = π∗

CM (t) − π∗

L−S(t), π
∗

2 (t) = π∗

CM (t) + π∗

L−S(t). (31)

This expression (31) means that the optimal investment strategy
invested in the two stocks is no longer a pure L-S strategy. Instead,
it comprises two parts, one part (i.e., −π∗

L−S(t) for stock 1 and
(π∗

L−S(t)) for stock 2) is the L-S strategy, the other part (i.e., π∗

CM (t)
for both stocks 1 and 2) is the common strategy. In particular, when
l1 = l2, i.e., when stock 1 and stock 2 have the same liquidity, we
still have non-zero common strategy, but the long–short strategy
π∗

L−S only depend on the mispricing x and is independent of the
appreciation rate a; and the common strategy π∗

CM depends only
on the appreciation rate and is independent of the mispricing.
This can be interpreted as saying that, under a balanced market
with friction, in order to take advantage of a mispricing arbitrage
opportunity, the part of the strategy which confers that arbitrage
advantage (L-S) need only concern itself with the mispricing level,
not the non-stationarity of appreciation rates, while the part of the
strategy which takes advantage of risk diversification (common),
not arbitrage, only needs to worry about appreciation rates. This
is a rather natural and intuitive situation, but it is interesting that
this intuition breaks down when liquidities are unbalanced. More
details and numerical analysis on π∗

L−S and π∗

CM will be given in
Section 4.

Summarizing the discussion above and using a verification
theorem whose proof is straightforward (see Yi et al. (2015a),
Mataramvura and Øksendal (2008) and Honda and Kamimura
(2011), we have the following Theorem.

Theorem 3.1. For the optimization problem (10), the value function
V (t, w, x, a) = J(t, w, x, a) if J(t, w, x, a) is the solution of (12),
i.e.,

V (t, w, x, a) = −
1
γ

exp
{
−γ

[
er(T−t)w +

1
2
A1(t)x2 + A2(t)x

+ A0(t) +
1
2
B1(t)a2 + B2(t)a + B3(t)ax

]}
,

where A1(t), A2(t), A0(t), B1(t), B2(t) and B3(t) are given by (26)
and (27); the corresponding optimal reinsurance-investment strategy
is given by

π∗
= (q∗(t), π∗

m(t), π
∗

1 (t), π
∗

2 (t)),

where q∗(t) is determined by (18), π∗
m(t), π

∗

1 (t) and π
∗

2 (t) are given
by (28).

The optimal reinsurance strategy is dependent on both the
ambiguity aversion α3 and the absolute risk aversion coefficient γ .
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The optimal investment strategy is driven by the sum α1 + γ , the
ambiguity-aversion level α2, and depends on the mispricing x and
the appreciation rate a(t) of the risky asset. Onemight legitimately
wonder why the investment finance strategy requires knowledge
of the ambiguity level from the insurance model. This is due to the
fact that the Brownianmotions {B(t)} and {Z(t)} are correlated. The
insurer has to consider the risk from the financial market and from
the surplus process when she makes investment decisions. The
amount invested in the two stocks will decrease with the increase
of ambiguity aversion α1 and α2. Note that the optimal strategy
invested in both stocks is not an L-S strategy even in the case
l1 = l2, because πCM does not equal 0 as we mentioned: it changes
with the parameters a and α1, α2, γ and others. This persists even
when liquidities are equal and correlations are zero, because of the
presence of the term a/K .

If the insurer is an ANI, the optimization problem degenerates
into optimization problem (6) without ambiguity aversion. Simi-
larly to Theorem 3.1, we have the following Proposition.

Proposition 3.2. For optimization problem (6), the value function is
given by

V 0(t, w, x, a) = −
1
γ

exp{−γ [P(t)w +
1
2
A10(t)x2

+ A20(t)x + A00(t) +
1
2
B10(t)a2

+ B20(t)a + B30(t)ax]},

and the optimal strategy π∗

0 (t) = π∗(t)|α1=α2=0, where

A10(t) = −σ 2
a γ ρ̂

2
0

∫ T

t
B2
3(s)ds

+
T − t
2

(
(l2 − l1)2

(b2 + 2σ 2)γ
+

(l1 + l2)2

γ b2
),

A20(t) = −σ 2
a γ ρ̂

2
0

∫ T

t
B2(s)B3(s)ds − (

µmσaρ0

σm
− nm)

∫ T

t
B3(s)ds,

B20(t) = −e−
∫ T
t (n+γ σ2

a ρ̂
2
0B1(s))ds

∫ T

t

[
(
µmσaρ0

σm
− nm)B1(s)

× e
∫ T
s (n+γ σ2

a ρ̂
2
0B1(u))du

+
4σ1σ 3ρer(T−s)

(2σ 2 + b2)2
]
ds,

B30(t) = −e−
∫ T
t (n+γ σ2

a ρ̂
2
0B1(s))ds

∫ T

t

l2 − l1
(b2 + 2σ 2)γ

× e
∫ T
s (n+γ σ2

a ρ̂
2
0B1(u))duds,

A00(t) = −
γ σ 2

a

2
ρ̂2
0

∫ T

t
B2
2(s)ds + b2

∫ T

t
A1(s)ds

− (
µm

σm
σaρ0 − nm)

∫ T

t
B2(s)ds

+
σ 2
a

2

∫ T

t
B1(s)ds +

∫ T

t
(
µ2

m

2σ 2
mγ

−
1
2
σ 2
1 γ P

2(t)

−
σ 2
1 σ

2ρ2γ P2(t)
2σ 2 + b2

)dt

+ λµ∞

∫ T

t
(η − θ + (1 + θ )q∗(s))er(T−s)ds

+ λEQ
[eP(t)q0(t)γ Y − 1],

B10(t) =
e−ϵ1(T−t)

− e−ϵ2(T−t)

( e
−ϵ2(T−t)

ϵ2
−

e−ϵ1(T−t)

ϵ1
)γ ρ̂2

0σ
2
a

, (32)

with ϵ1 = n +

√
(n2 +

2σ2
a

2σ2+b2
) and ϵ2 = n −

√
(n2 +

2σ2
a

2σ2+b2
).

Wepoint out that in this case the value function can be obtained
by inserting α1 = α2 = 0 into the value function of Theorem 3.1.
We find that the utility function V 0(t, w, x, a) > V (t, w, x, a),
which means that ambiguity aversion causes the insurer to lose
some utility, as well it should. This is the trade-off for being
skeptical about one’s modeling abilities and worrying about the
consequences of misspecifying one’s model. We believe that such
skepticism is a common and healthy component of an insurance
modeler’s characteristics: the will to consider some modeling un-
certainty when making decisions. Another way to interpret an
AAI’s willingness to give up some utility for this modeling peace of
mind comes from the financial paradigm of risk and reward: lower
ambiguity levels mean higher risk and should imply higher re-
wards on average. Under this interpretation, the ambiguity-averse
model helps the AAI have a systematic way of considering some
conservative strategies, accepting some utility loss to attain a safer
strategy. In the next section we will provide some quantitatively
explicit explanations and evaluations of these utility losses.

Before doing so, we must prepare the terrain by expressing
optimal value functions and optimal strategies for an AAI who
ignores mispricing and reinsurance in her business model. The
idea is that one ought to be able to show that making full use of
mispricing and reinsurance will benefit the insurer by achieving
higher profits/utility.

(i) Case 1: No mispricing case. In this case, we assume that
the AAI ignores the mispricing in the market between stock
1 and stock 2 and mistakes π IM

= π∗
|x=0 as the opti-

mal strategy, i.e., π IM (t) = (q∗(t), uIM (t)), where uIM (t) =

(π IM
m (t), π IM

1 (t), π IM
2 (t)) = (π∗

m(t), π
∗

1 (t), π
∗

2 (t))|x=0 are given by

π IM
m (t) = e−r(T−t)

[
µm

σ 2
m(α1 + γ )

−
σaρ0

σm
(B1(t)a(t) + B2(t))],

π IM
1 (t) = e−r(T−t)

[
1
K
a(t) − (A2(t) + B3(t)a(t))] −

(α2 + γ )σ1σρ
K

,

π IM
2 (t) = e−r(T−t)

[
1
K
a(t) + (A2(t) + B3(t)a(t))] −

(α2 + γ )σ1σρ
K

.

We can obtain the corresponding value function V IM by solving the
following optimization problem

inf
Q IM∈Q

{
EQ
t,w,x,a

[
−

1
γ

exp{−γWπ IM
(T )}

+

∫ T

t

( RIM
1 (s)
ψ IM

1 (s)
+

(hIM (s))2

ψ IM
2 (s)

+
RIM
3 (s)
ψ IM

3 (s)

)
ds

]}
, (33)

where

RIM
1 (s) =

1
2
∥ϕIM (s)∥2, RIM

3 (s) = (φIM (s) lnφIM (s) − φIM (s) + 1)λ,

ψ IM
i (s) = −

αi

γV IM (s, w, x, a)
, i = 1, 2, 3, ϕIM (s)

= (hIM
m (s), ĥIM (s), hIM

1 (s), hIM
2 (s)).

ψ IM
1 (s) and ψ IM

2 (s) stand for preference parameters for ambiguity
aversion to the financial market and the negative claims of the
insurer. Q IM is determined by (ϕIM , φIM ). Thus we can derive the
following Proposition.

Proposition 3.3. In optimization problem (33), where the insurer
does not take advantage of the mispricing which exists in the financial
market, the value function is given by

V IM (t, w, x, a) = −
1
γ
exp{−γ (P(t)w +

1
2
A1IM (t)x2

+ A2IM (t)x + A0IM (t) +
1
2
B1IM (t)a2

+ B2IM (t)a + B3IM (t)ax)},
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where P(t) is given by Theorem 3.1 and A1IM (t), A2IM (t), A0IM (t),
B1IM (t), B2IM (t), B3IM (t) are determined by the following differential
equations

−
1
2
A′

1IM (t) + (l1 + l2)A1IM (t) + (α1 + γ )b2A2
1IM (t)

+
1
2
(α1 + γ )σ 2

a B
2
3IM (t) = 0,

−A′

2IM (t) + (l1 + l2)(A2IM (t) − A2(t))
+ σ 2

a (α1 + γ )B3IM (t)(B2IM (t) − ρ2
0B2(t))

+ 2b2(α1 + γ )A1IM (t)A2IM (t) + (
µm

σm
σaρ0 − nm)B3IM

− 2b2(α1 + γ )A2(t)A1IM (t)
(α2 + γ )(l2 − l1)σ1σρP(t)

K
= 0,

−
1
2
B′

1IM (t) + nB1IM (t) +
1
2
(α1 + γ )σ 2

a (B
2
1IM (t)

+ ρ2
0B

2
1(t)) + b2(α1 + γ )(B2

3IM (t) + B2
3(t))

− 2b2(α1 + γ )B3IM (t)B3(t) − σ 2
a ρ

2
0 (α1 + γ )B1(t)B1IM (t) −

1
K

= 0,

−B′

2IM (t) + nB2IM (t) + (α1 + γ )σ 2
a B1IM (t)B2IM (t)

+ 2b2(α1 + γ )A2IM (t)B3IM (t)

+ (
µm

σm
σaρ0 − σ 2

a ρ
2
0 (α1 + γ )B2(t))B1IM (t)

− 2b2(α1 + γ )(B3(t)A2IM (t) − A2(t)B3IM (t)
+ A2(t)B3(t)) + (α1 + γ )σ 2

a ρ
2
0 (B1(t)B2(t)

− B1(t)B2IM (t)) + 2b2(α1 + γ )A2(t)B3(t)

− nmB1IM (t) +
4σ1σρP(t)

K
(α2 + γ −

α2σ
2(γ + α1ρ̂

2
+ α2ρ

2)
K

)

−
2(α2 + γ )(α1 + γ )σ1σρ(α1 + γ )P(t)b2

K 2 = 0,

−B′

3IM (t) + (n + l1 + l2)B3IM (t) + (α1 + γ )σ 2
a B1IM (t)B3IM (t)

+ 2b2(α1 + γ )A1IM (t)B3IM (t)
− 2b2(α1 + γ )A1IM (t)B3(t) − σ 2

a ρ
2
0 (α1 + γ )B1(t)B3IM

− (l1 + l2)B3(t) −
l2 − l1

K
= 0,

−A′

0IM (t) +
1
2
σ 2
a (α1 + γ )(B2

2IM (t) + ρ2
0B

2
2(t))

+ b2(α1 + γ )(A2
2IM (t) + A2

2(t))

− b2A1IM (t) −
1
2
σ 2
a B1IM (t) + (

µm

σm
σaρ0 − mn)B2IM

− σ 2
a ρ

2
0 (α1 + γ )B2(t)B2IM (t)

− 2b2(α1 + γ )A2(t)A2IM (t) −
µ2

m

σ 2
m(α1 + γ )

−
(α2 + γ )2σ 2

1 σ
2ρ2P2(t)

K

+
σ 2
1 P

2(t)
2

(α1 + γ ) − P(t)(η − θ + (1 + θ )q(t))λµ∞

+
λ

α3
(φ∗(t) − 1) = 0.

In this case, there does exist mispricing in the financial market,
and the AAI continues to invest in the two stocks even though the
investment strategy ignores mispricing. So this case can be used
to illustrate the importance of taking advantage of mispricing by
defining the loss utility between the optimal strategy and the strat-
egy where the AAI mistakenly believes x = 0. We will investigate
this further in Section 4.

(ii)Case 2: No reinsurance case. The insurer only invests in
the financial market and does not purchase reinsurance, i.e.,
π IR

= π∗
|q∗(t)≡1. The optimization problem (10) degenerates to

investment-only problem. Setting q∗(t) ≡ 1 in Theorem 3.1, we
easily derive the following Proposition.

Proposition 3.4. For the optimization problem (10), if the insurer
ignores reinsurance, the value function is given by

VNR(t, w, x, a) = −
1
γ

exp{−γ [P(t)w +
1
2
A1(t)x2

+ A2(t)x + A0NR(t) +
1
2
B1(t)a2 + B2(t)a + B3(t)ax]},

where A1(t), A2(t), B1(t), B2(t), B3(t) is given by Theorem 3.1 and

A0NR(t) = −
(α1 + γ )σ 2

a

2
ρ̂2
0

∫ T

t
B2
2(s)ds + b2

∫ T

t
A1(s)ds

− (
µm

σm
σaρ0 − nm)

∫ T

t
B2(s)ds

+
σ 2
a

2

∫ T

t
B1(s)ds +

∫ T

t
(

µ2
m

2σ 2
m(α1 + γ )

−
(α2 + γ )(γ − α2)σ 2

1 σ
2ρ2P2(s)

K

−
1
2
σ 2
1 (α2 + γ )P2(s))ds + λµ∞

∫ T

t
(η + 1)er(T−s)ds

−
λ

α3

∫ T

t
(exp{

α3

γ
EQ

[eP(s)γ Y − 1]} − 1)ds.

4. Analysis of the results and numerical illustration

This section is devoted to providing some numerical exam-
ples to show the impact of the ambiguity aversion preference
parameters (α1, α2, α3), the mispricing X(t), the risk premium
a(t), and some other parameters, on the AAI’s optimal strategy
and the utility loss functions. Our model’s fixed parameters must
be calibrated to the financial and insurance markets. We choose
calibration against data relative to four Chinese bank stocks traded
in both China and Hong Kong, as used in Table 1 of Yi et al.
(2015a). Specifically, throughout this section, unless otherwise
stated, the basic parameters of the financial market are given by
r = 0.03, γ = 0.8, σ = 0.3, b = 0.3, λ = 10, l1 = 0.2, l2 =

0.6, σa = 0.5; n = 0.7; m = 0; a = 0.0132; ρ = 0.5; ρ0 = 0.
The other parameters are taken as η = 0.1, θ = 0.2, T = 4, β =

1.1, w = 2, α1 = α2 = α3 = 0.2,which are realistic values for our
purposes. Moreover, we assume that the claim size Yi follows the
exponential distributionwith parameter λY = 6 (an average of one
claim every two months, corresponding to the idea of an insurer
with a small number of large clients), and therefore the claim size
density function is f (y) = 6e−6y.

4.1. Effects of relevant parameters on the robust optimal strategy

The parameters we concentrate on our analysis include the
ambiguity aversion levels (α1, α2, α3), themean-reversion speeds
(n, l1 + l2), and the intensity of claims arrival (λ). According to
Theorem 3.1, we see that the optimal reinsurance strategy does
not depend on the parameters given in the financial model; but
the diffusion risk of the insurancemodel affects the optimal invest-
ment strategy because of the correlation between {B(t)} and {Zt}.
We begin our analysis with the optimal investment strategy.

To fix ideas, we assume that the mispricing X(t) > 0 and that
l2 > l1 > 0. This means that stock 1 will be overpriced and stock
2 will be underpriced, and the rate of reversion of the underpriced
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stock back to the mean is faster than the rate of reversion of the
overpriced stock back to the mean. Thus an advantage of having a
large long position in the underpriced stock will have a tendency
to disappear faster. Therefore, onewould expect the AAI to want to
take advantage of mispricing today, as opposed to hoping that the
mispricing will persist into the future. Other combinations of the
relative positions of l1 and l2, and of X relative to 0, are possible,
with corresponding interpretations and analyses, but we will not
detail these herein, leaving such exercises for the interested reader.

According to (31), we saw that the optimal amounts invested in
the two stocks are decomposed into two parts, i.e.,

π∗

1 (t) = π∗

CM (t) − π∗

L−S(t), π
∗

2 (t) = π∗

CM (t) + π∗

L−S(t).

Recall thatπ∗

CM (t) is called common strategy,which depends on the
mispricing x, the appreciation rate a, and the ambiguity aversion
parameters α1 and α2. Further,π∗

CM (t) increases with respect to the
mispricing x and the appreciation of the stock a, but decreaseswith
respect to the ambiguity aversions α1 and α2. We notice that not
only α2 but also the correlation coefficient ρ affect the common
strategy πCM (t): the smaller ρ is, the less impact the insurance
model will have on the optimal strategy. The other part π∗

L−S(t)
represents the demand for hedging, it is not difficult to find that
therewill bemore hedging demandwith the increase ofmispricing
x and the appreciation rate a, because A1(t) and B3(t) are greater
than 0 in our case. Moreover, the reversion speeds l1 + l2 and n of
X(t) and a(t) have positive effects on the strategy π∗

L−S , i.e., higher
liquidity in the financial market encourages larger positions in the
hedging strategy. As Fig. 1 (a-b) shows that, in our case x > 0,when
a > 0, π∗

L−S will increase with the increase of n and l1 + l2; on the
other hand, π∗

L−S is not sensitive to n, but is very sensitive to l1 + l2.
When l1 = l2, i.e., the stocks have the same liquidity, the hedging
strategy does not depend on n. An intuitive explanation is that the
hedging strategy comes from the difference in liquidity between
the two stocks and their mispricing. Moreover, the speed of mean-
reversion will push up or slow down the liquidity of the stocks,
and thereforewill have an effect on the hedging strategy. However,
this impact will disappear at any time when the difference in
liquidity between the two stocks is zero. These are also indications
that the AAI should pay close attention to changes in liquidity
when pursuing a strategy to exploit mispricing. The combined risk
aversion parameter α1 + γ is consistent with our intuition: π∗

L−S
will decline with the increase of risk aversion. Moreover, as seen
in Fig. 1, the time horizon (time to maturity) can have a major
impact on the investment strategy. Specifically, Fig. 1 shows that
π∗

L−S decreases as time t gets larger (as maturity approaches).
Now consider the effects, on the optimal investment strategies

π∗

1 and π∗

2 , of the appreciation rate a, the mispricing x, and the
ambiguity aversion to diffusion risk. As shown in Fig. 2, a has a
positive effect on π∗

1 and π∗

2 : with the increase of a, the investor
will invest more into stock 2, and decrease the absolute value
in stock 1, and so is the sum π∗

1 + π∗

2 , which shows that the
insurer will increase her position in stocks with the increase of a,
as per standard intuition. The mispricing x has a positive impact
on π∗

2 and has a negative impact on π∗

1 , i.e., with an increase
in mispricing, the insurer will invest more into the underpriced
stock 2, and short more of stock 1. As a result, she increases her
amount π∗

1 + π∗

2 with mispricing. If we fix a and x, as Fig. 3 shows,
the insurer will decrease the positions in her two stocks under
higher ambiguity aversion α1 and α2, and as maturity approaches,
which causes the sum π∗

1 + π∗

2 also to decrease with α1 and α2.
In particular, Fig. 3 tells us that α1 has a more significant impact
on the optimal investment strategy than α2, which shows that the
uncertainty from the financial market takes a more important role
in the investment activities.

Next, we discuss the impact of some parameters on the optimal
market investment strategy π∗

m. From the first line of Eq. (28),

we know that the amount invested in the market index has a
positive relation with the market risk premium µm and a negative
relationship with the market volatility σm. When the correlation
coefficient ρ0 ̸= 0, the insurer will decrease the amount invested
in the market index with the increase of appreciation rate a and
mispricing x; this indicates that she would like to transfer more of
her risky funds to the mispriced asset, to take advantage of that
arbitrage.

In the following, we discuss the impact of some parameters
on the optimal reinsurance strategy. As we mentioned above, the
reinsurance strategy does not depend on the parameters in the
financial model. So we only need to discuss the impact of the
ambiguity aversion parameters (α2, α3) and the safety loading
factor θ on the optimal reinsurance strategy q∗(t).

The insurer buys reinsurance to avoid some of the risk from
the claims. Therefore, one expects that the ambiguity aversion to
the diffusion term in the insurance model should not affect the
reinsurance strategy. This is indeed the case, since we can see
that Eq. (18) does not depend on α2, which accounts for ambiguity
aversion to the insurance diffusive risk modeling. However, α3
which represents the ambiguity aversion to claim risk modeling,
has an important effect on the q∗. Fig. 4(a) shows that the AAI
will decrease her retention level with the increase of ambiguity
aversion α3, i.e., the AAI prefers to buy more reinsurance and
transfer more risk to the reinsurer if she is more ambiguity-averse
to claims modeling. On the other hand, a higher safety loading
factor θ imposed by the reinsurer will persuade the insurer to buy
less reinsurance and to increase her retention level; see Fig. 4(b)
for more details. For example, when θ = 0.45, which represents
a rather high level, the retention level is greater than 90%, which
means the insurer tends not to buy reinsurance; she deems it too
expensive in comparison with her investment and insurance busi-
ness opportunities. Moreover, Fig. 4 illustrates the phenomenon
by which, for short time horizon, the AAI tends to purchase more
reinsurance and transfer more risk to the reinsurer, but for long
time horizon, the AAI may transfer little to the reinsurer. This is
consistent with the idea of becoming more conservative as one’s
investment and business opportunities approach maturity.

4.2. Effects of model parameters on the loss utility

In this subsection,we analyze the effects (α1, α2, α3), l1, l2 and
λ, on the loss utility functions, which are generated from ignoring
ambiguity aversion, mispricing, and reinsurance.

As we explained earlier in the paper, the AAI is suspicious about
the validity of her referencemodel, is averse to that ambiguity, and
therefore she wants to find a conservative strategy which decrease
the risk associated with model misspecification. On the contrary,
the ANI believes fully in the reference model, and therefore pays
more attention to maximizing her terminal utility, so she takes on
more radical investment strategies. Therefore, as we mentioned,
the ANI will always gain higher utility than the AAI, within the
same given financial market and insurance models. We define the
loss utility function

L0 = 1 −
V 0

V
where V and V 0 are given by Theorem 3.1 and Proposition 3.2,
representing the value functionswith andwithout ambiguity aver-
sion, namely, representing the value functions for optimization
problem (10) and optimization problem (6), respectively. As shown
in Fig. 5, the utility loss from ignoring the ambiguity will increase
with the increase of ambiguity aversion α1, α2 and α3, and is more
sensitive to them with the increase of liquidity, see Fig. 5(a) with
l1 = 0.2, l2 = 0.6 and Fig. 5(b) with l1 = l2 = 0.2. At the same
time, the utility loss is essentially not sensitive toα2 andα3, as seen
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Fig. 1. Impact of n and l1 + l2 on the optimal investment strategy.

Fig. 2. Impact of a and of x on the optimal investment strategy with t = 2.

in Fig. 5(d–f). All this shows that ambiguity aversion to the financial
market is the main cause of utility loss.

The most pronounced effect observed in Fig. 5 is the fact that
utility loss increases dramatically with respect to the horizon time
T − t . This means that for medium and long-term horizons, being
ambiguity averse is potentially very expensive, but it is a more
affordable attitude for short time horizons.

Next, we study the situation in which there exists mispricing
in the market, but the AAI does not realize this point, so she think
that the optimal investment strategy is π∗

|l1=l2=0 = π∗
|x(t)≡0, and

gets the corresponding optimal value function V IM . Ignoring the
mispricing can causemissing some investment opportunities, thus
this causes some loss in the utility. Correspondingly, we define the
utility loss function

LIM = 1 −
V
V IM .

It is shown in Fig. 6(a, b) that this utility loss will increase with
the decrease of ambiguity aversion α1. This can be explained by
the decrease in hedging demand: the higher α1 is, the less the fully
cognizant insurer would have liked to exploit mispricing, the less

ignoring those opportunities will cause loss of utility. We notice
that when l1 ̸= l2, the utility loss is more sensitive to α1 and is
larger than that in the case of l1 = l2. This is due to the fact that,
when l1 = l2, utility loss is caused by the L-S strategy and π∗

L−S has
a negative relationship with α1.

It is shown in Fig. 6(c) that the smaller themean reverting rate n
is, the greater the utility loss function is. This is an indication that,
because the mean reverting rates n measure the speed at which
the risk premium a(t) of the stocks gets back to the long-run mean
m, when n is smaller, the investor will choose to adopt greater
leverage on the mispricing of stocks since it persists for longer. We
notice that the loss utility is not sensitive to the change of n and
the effect of n on the loss utility will increase with the increase of
liquidity. As a result, this leads tomore utility losswhenmispricing
opportunities are ignored.

Similarly, Fig. 6(d) also informs us aboutwhat ignoringmispric-
ing can bring in terms of utility loss when the economic conditions
are conducive to more dynamic mispricing between stocks 1 and
2. Indeed, when the liquidities l1 and l2 are higher, one might in
principle believe that mispricing opportunities decrease, but in
reality, at a given mispricing level x, the effect on utility loss will
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Fig. 3. Impact of α1 and α2 on the optimal investment strategy with fixed a and x.

Fig. 4. Impact of α3 and θ on the optimal reinsurance strategy.

be greater for higher liquidities, as seen in that figure. This must
be interpreted by saying that for a given mispricing level, higher
liquidities imply a higher reversion of the mispricing level to its
mean 0, but also a faster subsequently reversion to similar levels
as the original x, which the AAI who is cognizant of mispricing can
take advantage of. TheAAIwho ignores this suffers the utility losses
in Fig. 6(d). In addition, Fig. 6 hints at another piece of information:
taking advantage of mispricing is more important for long-horizon
investors than that for short-horizon investors. For example, in the
case of l1 = l2 = 0.4, the effect is dramatic: when T − t = 1, the
loss utility is less than 10%, but when T − t = 4, the loss utility
approaches 90%.

Finally, we analyze utility loss from ignoring reinsurance. As we
know, reinsurance is a main measure for the insurer to avoid her
business risk, or transfer that risk. Moreover, reinsurance is a tool
to help increase utility, as we now see. We define the utility loss

LNR = 1 −
V
VNR .

Fig. 7 tells us ignoring the reinsurance will generate some utility
loss, which connects the ambiguity aversion to the jump risk in

the AAI’s surplus, to the claim intensity, and to the reinsurance
premium. Ambiguity aversion α3 has a positive effect on the loss
utility, i.e., the loss will increase with the increase of ambiguity
aversion to jump intensity modeling. This is because the more the
AAI is averse to errors in the claims model, the more the fully
cognizant AAI will tend to depend on reinsurance, so the higher
the loss will be if she ignores reinsurance as a risk-mitigation
tool. Fig. 7(b) tells us that the intensity of claims arrival has an
important role in the utility loss LNR: intuitively, the demand for
reinsurance should increase with an increase in claim intensity,
and the figure shows that the corresponding loss from ignoring this
risk-mitigation measure also increases in this case. On the other
hand, before the AAI buys reinsurance, she will consider its price
and should be more likely to buy more of it at a lower price. This
should be captured in the safely loading factor θ . One expects that
when θ is high, the AAImaybe choose to give upmost reinsurance:
indeed, we can see in Fig. 7(c) that when θ = 0.28, the utility
loss is less than 6% without reinsurance. Fig. 7 also shows that in
all cases, longer time horizons have a marked effect on the utility
loss from ignoring reinsurance, but such an insurer’s loss would
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Fig. 5. Impact of α1, α2 and α3 on the loss utility function L0(t).

be much smaller, and arguably negligible, for short time horizon,
e.g. less than a year. Finally, we mention the effect of ambiguity on
the insurance diffusion modeling risk: this ambiguity is captured

by α2, and we see that it does not affect the loss utility LNR at all,
see Fig. 7(d). The reason is plain to explain: LNR only depends on
the claim risk and is independent of the other risk.
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Fig. 6. Impact of α1, n and l1 + l2 on the loss utility function LIM (t).

5. Conclusion

In this paper, we discuss optimal reinsurance-investment
strategies for an ambiguity-averse insurer (AAI) with mean rever-
sion and mispricing. The AAI’s surplus is described by a jump–
diffusion model and the insurer accepts ambiguity towards both
the jump term and the diffusion term in the model, meaning that
she is skeptical about her own ability to choose the corresponding
model drift parameters, as shewould using calibration or statistical
tools based on insurance market data. We also consider a finan-
cial market consisting of one risk-free asset, one market index,
and a pair of mispriced stocks which offer statistical (stochastic)
arbitrage opportunities, which the AAI may take advantage of.
The appreciation rate for the stock and the mispricing ratio are
described by mean-reverting stochastic processes whose mean-
reversion rates reflect liquidity constraints. The insurer is also sus-
picious of the financialmodel’s veracity, calling its drift parameters
into question as well. With these two sources of modeling ambigu-
ity, she worries about the robustness of her results and decisions
based on her estimated or calibrated model. Thus we formalize
the insurer’s ambiguity aversion to the insurance model and the
financial market and use the so-called ‘‘homothetic robustness’’
modification of a classical exponential utility to study the problem

of optimizing the AAI’s utility given her ambiguity levels. These
levels of modeling-risk aversion are described by one parameter
for ambiguity in the diffusive term in the financial model, one
parameter for ambiguity in the diffusive term in the insurance
surplus model, and one parameter for ambiguity in the jump term
in the insurance claims model. Using the dynamic programming
approach, we derive the explicit optimal robust reinsurance strat-
egy and the corresponding value function. Finally, we give numer-
ical illustrations to analyze our results and make some practical
recommendations. By studying our optimal investment strategy’s
sensitivity to various parameters, we uncover that liquidity has
an important role in the so-called long–short (L–S) strategy, the
one which takes advantage of statistical arbitrage afforded bymis-
pricing. We also find that the positions in the two stocks decrease
with respect to time-to-maturity and to ambiguity.We further find
that the insurer tends to decrease her reinsurance level with the
increase of her ambiguity aversion and as the reinsurance premium
increases. In order to show the importance of ambiguity aversion,
mispricing, and reinsurance, we also define and discuss loss utility
functions from ignoring these effects. Ignoring ambiguity can bring
higher profit if the model is correct; using ambiguity appears to
be expensive for longer investment horizons. Ignoring mispricing
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Fig. 7. Impact of α3, λ, θ and α2 on the loss utility function LNR(t).

and reinsurance results in losses of utility which are significant for
medium and longer investment horizons.
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