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a b s t r a c t

This paper considers a robust optimal investment and reinsurance problem with multiple dependent
risks for an Ambiguity-Averse Insurer (AAI), who is uncertain about the model parameters. We assume
that the surplus of the insurance company can be allocated to the financial market consisting of one
risk-free asset and one risky asset whose price process satisfies square root factor process. Under
the objective of maximizing the expected utility of the terminal surplus, by adopting the technique
of stochastic control, closed-form expressions of the robust optimal strategy and the corresponding
value function are derived. The verification theorem is also provided. Finally, by presenting some
numerical examples, the impact of some parameters on the optimal strategy is illustrated and some
economic explanations are also given. We find that the robust optimal reinsurance strategies under
the generalized mean–variance premium are very different from that under the variance premium
principle. In addition, ignoring model uncertainty risk will lead to significant utility loss for the AAI.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The insurance market plays a quite important role in the global
financial market. The stable operation of insurers influences the
stability of the financial market. Reinsurance and investment are
two significant issues for the insurers. On one hand, through the
reinsurance, the large claims risk of the insurer is transferred to
other insurers, so it is an effective risk-spreading approach. On
the other hand, by investing the surplus into the financial market,
the insurer can increase her wealth and enhance the market
competitiveness. Recently, based on different decision-making
objectives such as minimizing the ruin probability of the insurer,
maximizing the expected utility of terminal surplus or mean–
variance criteria, much attention has been paid to the research on
the optimal reinsurance or/and investment problem. For example,
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the related literature can refer to Cao and Wan (2009), Liang and
Guo (2011), Zhang et al. (2016a,b), and Xu et al. (2017) etc.

In the afore-mentioned literature, the insurance company is
assumed to have only one business. In fact, many insurance
companies have two or more lines of business, and most of them
are not independent of each other due to the risk of suffering
from a common claim shock. For example, the auto insurance and
third party insurance, the casualty insurance and health insurance
are all dependent lines of business. Thus, many scholars begin to
investigate the optimal investment or reinsurance strategy under
the multivariable dependent risks. For example, Bai et al. (2013)
firstly convert the two-dimensional compound Poisson reserve
risk process into a two-dimensional diffusion approximation pro-
cess, and derive the optimal reinsurance strategy to minimize
the ruin probability of the insurer. Under the variance premium
principle and the objective of maximizing the expected expo-
nential utility of terminal surplus, Liang and Yuen (2016) obtain
the optimal proportional reinsurance strategy when the surplus
of insurance company is described by a two-dimensional depen-
dent compound Poisson process and its diffusion approximation,
respectively. Meanwhile, Yuen et al. (2015) extend the work
of Liang and Yuen (2016) to the risk model with multiple depen-
dent classes of insurance business. Ming et al. (2016) investigate
the optimal reinsurance strategy with common shock depen-
dence based on mean–variance criteria. Later, Bi et al. (2016)
extend the model of Ming et al. (2016) to the case that the surplus
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can be invested in the financial market, and both the optimal
investment and reinsurance strategies are obtained.

In the traditional investment or reinsurance model, the param-
eters are assumed to be fixed constant or deterministic function
of time, i.e., the insurer has no doubt and is quite sure about the
accuracy of the estimated parameters. However, in practice, it is
difficult to estimate the parameters of the model with precision,
especially the expected return of the risky asset. The same un-
certainty exists in the surplus process of the insurance company,
which results in the so-called model uncertainty. Usually, the
model, with the parameters of which are estimated under the real
probability measure P, is called the reference model relative to
the real but unknown model. Due to the inevitability of statistical
error, the reference model deviates from the real model more or
less. According to the existing literature, the optimal reinsurance
or investment strategy depends on the model parameters. The
non robustness of the estimated parameters will lead the optimal
strategy to be unstable. When the insurer is aware of the risk of
model uncertainty, she will take model uncertainty into consider-
ation during the decision-making process. In this case, the insurer
is called ambiguity-averse and she prefers the optimal strategy
which is robust to model misspecification. Thus, model uncer-
tainty, which has remarkable impact on the optimal investment
and reinsurance strategies, has to be taken into consideration in
the process of reinsurance arrangement and asset allocation.

Currently, the main approach of dealing with model uncer-
tainty is the robust control approach developed by Anderson
et al. (1999). The fundamental idea behind this method lies in
that the decision-maker takes the reference model as a starting
point, and she knows that the reference model cannot describe
the real insurance or financial market correctly. Therefore an
alternative model needs to be incorporated. The decision-maker
tries to find the optimal strategy among the family of alternative
models which does not deviate from the reference model too
much, and she can find the optimal robust strategy which is
the best choice in the worst case model. Based on the above
approach, Yi et al. (2013) consider a robust optimal reinsur-
ance and investment problem under Heston’s stochastic volatility
model for an insurer with ambiguity aversion, the closed-form
expression of the optimal strategy is obtained under the objective
of maximizing the expected exponential utility. Pun and Wong
(2015) investigate the robust investment–reinsurance problem
with more generally multiscale stochastic volatility. When the
price process of the risky asset satisfies constant elasticity of vari-
ance (CEV) model, Zheng et al. (2016) derive the robust optimal
investment and proportional reinsurance strategies. To investi-
gate the influence of the misspecification for jump parameter
on the optimal strategy of the insurer, Li et al. (2018) consider
the robust optimal excess-of-loss reinsurance and investment
strategies for the model with jumps. Under the mean–variance
criteria, Yi et al. (2015) obtain the robust optimal reinsurance
and investment strategies with a benchmark. Zeng et al. (2016)
derive the robust equilibrium reinsurance–investment strategies
with jumps in the framework of game theory.

In the literature mentioned above, the robust optimal rein-
surance or/and investment problems are investigated under the
risk model with only one business for an insurer. To the best
of our knowledge, there is little research on the robust optimal
decision-making problem under the multiple dependent risks for
an insurer. In this paper, we focus on the effect of uncertainty
about the diffusion risk arising from risky asset and surplus pro-
cess of the insurer, and consider the robust optimal investment
and reinsurance problem with multiple dependent risks. We as-
sume that the insurer adopts proportional reinsurance to disperse
risk. Refer to Zhang et al. (2016a), the reinsurance premium is
calculated under the generalized mean–variance premium princi-
ple, which includes the expected value principle and the variance

principle as special cases. The surplus of the insurance company
can be invested in the financial market consisting of one risk-
free asset and a risky asset or a market index. Inspired by Shen
and Zeng (2015) and Li et al. (2017), the price process of the
risky asset is assumed to satisfy a square-root factor process,
which can describe the randomness of volatility. We assume that
the insurer is both risk and ambiguity averse. Thus, under the
objective of maximizing expected exponential utility, using the
method of robust optimal control, we obtain the closed-form
expressions of optimal investment and reinsurance strategies and
corresponding value function. To evaluate the utility loss which
is caused by neglecting the risk of model uncertainty in the
decision-making process, we investigate a suboptimal strategy
and define a wealth-equivalent utility loss function. Finally, some
numerical analyses are given to present the sensitivity of the
optimal strategy and utility loss value on some parameters.

The main contribution of this paper is listed as follows.
(i) The robust optimal investment–reinsurance strategies under
the multiple dependent risks are investigated firstly. (ii) The rein-
surance premium of the multiple dependent risks is calculated
based on the generalized mean–variance premium principle.
(iii) The price process of the risky asset satisfies affine-form
square-root factor model, which is an even generalized model and
makes the CEV or Heston’s stochastic volatility model as special
cases. So our paper extends some existing models. In our paper,
for the optimal control problem under the diffusion risk model
with multiple dependent classes of business, the reinsurance pro-
portion for every class of business is required to belong to [0, 1].
The present constraints make the mathematical solution for the
robust optimal reinsurance strategies become more complex.
Comparing with the results from the existing literature we find
some novel results: (i) the robust optimal reinsurance strategies
under the generalized mean–variance premium principle depend
on not only the safety loading, time and interest rate, but also
the ambiguity-aversion coefficient, the claim amount and inten-
sity parameters. This is different from the optimal reinsurance
strategies under the variance premium principle (Liang and Yuen,
2016). They show that the optimal reinsurance strategies only de-
pend on the safety loading, time and interest rate. (ii) Yuen et al.
(2015) and Liang and Yuen (2016) only investigated the optimal
proportional reinsurance strategies. In our model, both robust
optimal investment and reinsurance strategies are obtained. We
find that the robust optimal investment strategy only depends on
the interest rate, ambiguity-aversion coefficient, and the financial
market parameters, which is independent of the parameters in
insurance market.

The rest of this paper is organized as follows. Assumption
and problem formulation are described in Section 2. In Section 3,
the robust optimization problem is solved, the closed-form of
the optimal investment and reinsurance strategies are derived.
In Section 4, a suboptimal strategy is considered and a utility
loss function is defined. Section 5 presents some numerical il-
lustration to analyze our theoretical results and investigates the
sensitivity of optimal strategy on some parameters. Section 6
concludes our work.

2. Assumption and problem formulation

In this section, we will give some assumptions for the in-
surance and financial market. We suppose that the risky asset
can be traded continuously over time, and no transaction costs
or taxes are considered. Let (Ω,F,F,P) be a filtered probability
space with filtration F = {Ft}t∈[0,T ] satisfying the usual conditions,
i.e., {Ft}t∈[0,T ] is right-continuous and P-complete, where T is a
positive finite constant representing the investment time horizon
of an insurance company.
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2.1. The surplus process

In this paper, we suppose that an insurance company has
multiple dependent lines of business such as auto insurance, third
party insurance, casualty insurance, health insurance and so on.
Let z(≥ 2) be the number of the dependent business which are
managed by an insurance company, X (l)

i (i = 1, 2, . . .) are the
claim size random variables for the lth (l = 1, 2, . . . , z) line
of business with common distribution Fl(x). The first-order and
second-order moments of the variable X (l)

i are denoted by µl =

E[X (l)
i ], and νl = E[(X (l)

i )2]. Let N1(t), N2(t), . . . ,Nz(t) and N(t) be
z + 1 independent Poisson processes with intensity parameters
λ1, λ2, . . . , λz and λ, respectively. Denote X(t) as the total surplus
of the insurance company up to time t , thus,

X(t) = x0 + ct −

z∑
l=1

Sl(t), t ≥ 0, (1)

where x0 is initial surplus. For l = 1, 2, . . . , z, Nl(t) + N(t)
represents the total claim number for the lth classes of business
at time interval [0, t], and Sl(t) =

∑Nl(t)+N(t)
i=1 X (l)

i is the aggregate
claims process generated from the class l. It is obvious that the
z classes of business subject to a common shock are governed
by the counting process N(t). Thus, the claims process among
the z classes of business is related to each other. c is the rate
of premium, which is calculated according to the expected value
premium principle with positive safety loading χ , namely,

c = (1 + χ )
( z∑

l=1

(λl + λ)µl

)
. (2)

To be protected from potential large claims, at each moment,
the insurer is allowed to purchase proportional reinsurance to
disperse risk, and let ql(t) ∈ [0, 1] be the reinsurance retention
levels for the lth (l = 1, 2, . . . , z) line of business at time t .
i.e., for a claim amount X (l)

i occurring at time t , the insurer pays
the claim amount ql(t)X

(l)
i , while the reinsurer pays (1−ql(t))X

(l)
i .

Let Xq(t) be the surplus process of the insurer associated with the
strategy q(t) = (q1(t), q2(t), . . . , qz(t)). The dynamics of Xq(t) can
be described by

dXq(t) = [c − δ(q(t))]dt −

z∑
l=1

ql(t)dSl(t), (3)

where δ(q(t)) is the reinsurance premium rate. From Grandell
(1991), we know that the compound Poisson processes Sl(t) can
be approximated by the following diffusion process Ŝl(t):

dŜl(t) = aldt + σldBl(t), l = 1, 2, . . . , z, (4)

where al = (λl + λ)µl, σ 2
l = (λl + λ)νl. Here Bi(t) and Bj(t) for

∀i ̸= j, i, j = 1, 2, . . . , z are standard Brownian motions with
correlation coefficient ρij ∈ (−1, 1). Then by Bai et al. (2013)
and Liang and Yuen (2016), the diffusion approximation of the
surplus process evolves as

dXq(t) = [c − δ(q(t)) −

z∑
l=1

alql(t)]dt

+

√ z∑
l=1

σ 2
l q

2
l (t) +

z∑
i̸=j

qi(t)qj(t)λµiµjdW0(t), (5)

where W0(t) is a standard Brownian motion.
In this paper, we adopt the generalized mean–variance pre-

mium principle (see Zhang et al. (2016a)) to calculate the rein-
surance premium, which includes the expected value principle
and variance principle as special cases. i.e., with the nonnegative

safety loading η and ξ , the reinsurance premium is (1+η)[E(·)+
ξVar(·)]. So

δ(q(t)) = (1 + η)
[ z∑

l=1

(1 − ql(t))al + ξh(q(t))
]
, (6)

where h(q(t)) =
∑z

l=1(1 − ql(t))2σ 2
l +

∑z
i̸=j(1 − qi(t))(1 −

qj(t))λµiµj.

Remark 2.1. When η > 0, ξ = 0, the reinsurance premium rate
degenerates to the expectation premium rate.

Remark 2.2. When η = 0, ξ > 0, the reinsurance premium rate
is calculated under the variance premium principle.

2.2. The financial market

We assume that the self-financing insurer is allowed to invest
the surplus into the financial market consisting of one risk-free
asset and one risky asset. The price process B(t) of the risk-free
asset satisfies

dB(t) = rB(t)dt, (7)

where r(> 0) represents the risk-free interest rate. The price
process S(t) of the risky asset is described by the following
stochastic volatility model, i.e.,

dS(t) = S(t)[µ(t)dt + σ (t)dW1(t)], (8)

where µ(t) is the appreciation rate and σ (t) is the volatility rate,
W1(t) is a standard Brownian motion. We define ϕ(t) =

µ(t)−r
σ (t)

for ∀t ∈ [0, T ] as the market price process of the risk. Referring
to Shen and Zeng (2015) and Li et al. (2017), we suppose that
the process {ϕ(t)}t∈[0,T ] is related to a stochastic factor process
{α(t)}t∈[0,T ], i.e.,

ϕ(t) = θ
√
α(t), ∀t ∈ [0, T ], θ ∈ R0 : R\{0}, (9)

where the stochastic factor process {α(t)}t∈[0,T ] satisfies the fol-
lowing affine-form mean-reverting square root model

dα(t) = k[φ − α(t)]dt +

√
α(t)[k1dW1(t) + k2dW2(t)],

α(0) = α0 ≥ 0, (10)

where k, φ, k1, k2 are all positive constants and W2(t) is an-
other standard Brownian motion. In addition, we assume that the
above Brownian motions W0(t), W1(t) and W2(t) are mutually
independent.

Remark 2.3. In model (8), for the appreciation rate µ(t) and
the volatility rate σ (t) of the risky asset, we assume that at least
one of them is a stochastic process and simultaneously related to
the stochastic factor process α(t) satisfying µ(t)−r

σ (t) = θ
√
α(t). The

reason for this setting is to make the following wealth process
(11) have an unique state variable, which makes the optimal
control problem of this paper tractable. Of course, under this
assumption, the market price of risk, ϕ(t), still keeps as a stochas-
tic process related to mean-reverting square root process α(t).
It is worth pointing out that the optimal control problem with
weaker assumption between the drift and volatility is investi-
gated in Pun and Wong (2015). In their model, the risky asset
is assumed to follow a multiscale stochastic volatility (SV) model,
and an investment–reinsurance strategy that well approximates
the optimal strategy of the robust optimization problem under
the multiscale SV model is derived.
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Remark 2.4. If α(t) = S−2β (t), µ(t) = µ, σ (t) = ϱ/
√
α(t) =

ϱSβ (t), k = 2βµ, φ = ( 12 + β) ϱ
2

µ
, k1 = −2βϱ, k2 = 0, θ =

µ−r
ϱ

,
where µ, ϱ > 0. Then the risky asset’s price process degenerates
into CEV model. Here β is the elasticity parameter. When β < 0,
the instantaneous volatility σ (t) will increase as the stock price
decreases. When β > 0, the situation is reversed. In reality, many
authors have examined that β < 0 is more realistic.

Remark 2.5. If µ(t) = r + θα(t), σ (t) =
√
α(t), k1 = σ0ρ,

k2 = σ0
√
1 − ρ2, where θ ∈ R0, σ0 > 0, ρ ∈ (−1, 1), moreover, if

the Feller condition 2kφ ≥ σ 2
0 is satisfied to guarantee α(t) > 0,

then the price process of the risky asset degenerates to Heston’s
stochastic volatility model.

Denote π (t) as the total amount of the insurer’s surplus in-
vested in the risky asset at time t , and the rest of the surplus
is invested in the risk-free asset. Then we define the decision
making process of the insurer as u(t) = {(π (t), q(t)), t ∈ [0, T ]}.
Thus, the surplus process associated with strategy u(t) is given by

dXu(t) = [c − δ(q(t)) −

z∑
l=1

alql(t)]dt

+

√ z∑
l=1

σ 2
l q

2
l (t) +

z∑
i̸=j

qi(t)qj(t)λµiµjdW0(t)

+π (t)
dS(t)
S(t)

+ [Xu(t) − π (t)]
dB(t)
B(t)

= [c − δ(q(t)) −

z∑
l=1

alql(t) + π (t)(µ(t) − r) + rXu(t)]dt

+

√ z∑
l=1

σ 2
l q

2
l (t) +

z∑
i̸=j

qi(t)qj(t)λµiµjdW0(t)

+π (t)
µ(t) − r
θ
√
α(t)

dW1(t). (11)

Remark 2.6. From Eq. (11), we find that the surplus process Xu(t)
depends on µ(t) and α(t). Recall Remark 2.3, we know that if the
process µ(t) is stochastic, which is assumed to be the function of
α(t). Thus, in the surplus process (11), we see {α(t)}t∈[0,T ] as the
unique state process.

2.3. Robust optimal control problem for an AAI

Now we suppose that the insurer is interested in maximiz-
ing the expected utility of the surplus at the terminal time T ,
and the insurer is assumed to have exponential utility U(x) =

−
1
m exp(−mx), where m > 0 is a constant representing the abso-

lute risk aversion coefficient. In traditional model, the insurer is
assumed to be an ambiguity-neutral investor (ANI) with objective
function as

sup
u∈Ũ

EP
[U(Xu(T ))] = sup

u∈Ũ
EP

[−
1
m

e−mXu(T )
], (12)

where Ũ is the set of admissible strategy u in a given market, and
EP is the expectation under the real probability measure P. Under
the traditional model, the insurer is usually assumed to be risk
averse, and she has no doubt about the model parameters. In this
case, we call the insurer as to be ambiguous-neutral. However,
during the asset allocation process of the surplus wealth, it is hard
to get the real and precise estimation for the related parameters
such as the expected return rate of risky asset, drift rate of the
stochastic factor process and the approximated diffusion pro-
cess of the surplus. The model, which is established by statistics

method under the real-world data and probability measure P, can
only be taken as the reference model to the real. Correspondingly,
the parameters are called the reference model parameters. Due to
the estimation error, the insurer is uncertain about the reference
model. He is aware that he does not know the real model, but
only looks at the reference model as an approximation of the
real model. Since the decision-making process depends on the
value of parameters, the uncertainty of parameters’ estimation
will directly affect the robustness of the strategy. To obtain the
robust investment and reinsurance strategies, one way is to re-
consider the model and parameters under an alternative measure
which is equivalent to the real-world measure. Now we try to
construct the set of alternative measures which are equivalent
to P, i.e., Q := {Q|Q ∼ P}. According to Girsanov’s theorem,
for each Q ∈ Q, there exists a progressively measurable process
γ (t) = (γ0(t), γ1(t), γ2(t))⊤, such that dQ

dP = ζ (T ), where

ζ (t) = exp
{
−

∫ t

0
γ (s)⊤dW (s) −

1
2

∫ t

0
∥γ (s)∥2ds

}
(13)

with W (t) = (W0(t),W1(t),W2(t))⊤, and ∥γ (t)∥2
= γ 2

0 (t) +

γ 2
1 (t) + γ 2

2 (t). If γ (t) satisfies Novikov’s condition (we will give
the technical condition in Remark 3.1)

EP
[
exp

{∫ T

0

1
2
∥γ (s)∥2ds

}]
< ∞,

then referring Karatzas and Shreve (2012), ζ (t) is a P−martingale
with filtration {Ft}t∈[0,T ]. Further more, by Girsanov’s theorem the
Brownian motions under Q ∈ Q can be defined as

dWQ
0 (t) = γ0(t)dt + dW0(t),

dWQ
1 (t) = γ1(t)dt + dW1(t),

dWQ
2 (t) = γ2(t)dt + dW2(t).

So under the alternative measure Q, the dynamic price process
S(t) of the risky asset, the stochastic factor process α(t) and the
surplus process Xu(t) can be rewritten as

dS(t) = S(t)[(µ(t) − γ1(t)σ (t))dt + σ (t)dWQ
1 (t)], (14)

dα(t) = [k(φ − α(t)) −

√
α(t)(k1γ1(t) + k2γ2(t))]dt

+

√
α(t)[k1dW

Q
1 (t) + k2dW

Q
2 (t)], (15)

dXu(t) =
{
c − δ(q(t)) −

z∑
l=1

alql(t) − γ0(t)

×

√ z∑
l=1

σ 2
l q

2
l (t) +

z∑
i̸=j

qi(t)qj(t)λµiµj

+π (t)[µ(t) − r − γ1(t)
µ(t) − r
θ
√
α(t)

] + rXu(t)
}
dt

+

√ z∑
l=1

σ 2
l q

2
l (t) +

z∑
i̸=j

qi(t)qj(t)λµiµjdW
Q
0 (t)

+π (t)
µ(t) − r
θ
√
α(t)

dWQ
1 (t). (16)

Now we give the definition of the set of admissible strategies
under the expected utility objective. Due to the fact that the
proof of Theorem 3.1 in the next section needs to use the result
from Kraft (2004), we adopt the following definition for the set
of admissible strategies (see Kraft (2004, p.18)). In this definition,
the following two boundedness conditions hold under the worst-
case probability measure Q∗. This measure will be determined by
solving the following optimization problem (17), since it contains
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an infimum over all measure Q ∈ Q. Due to that each Q is defined
by ζ (t) in Eq. (13) with γ (t), We can select suitable γ ∗(t) to
achieve the minimum, and denote the corresponding measure as
Q∗ (Gu et al., 2018).

Definition 2.1 (Admissible Strategy). A trading strategy {u(t)}t∈[0,T ]

is said to be admissible, if
(i) u(t) is a progressively measurable process taking value in

U = R × [0, 1]z and EQ∗

t,x,α[
∫ T
0 ∥u(t)∥4dt] < ∞, where Q∗ is the

chosen probability measure to describe the worst case and will
be shown later;

(ii) For ∀(t, x, α) ∈ [0, T ] × R × R+, Eq. (16) has a pathwise
unique solution {Xu(t)}t∈[0,T ] with EQ∗

t,x,α|U(Xu(T ))| < +∞, where
EQ∗

t,x,α[·] = EQ∗

[·|Xu(t) = x, α(t) = α].
Denote by U the set of all admissible strategies. Similarly, we

can obtain the set of admissible strategies Ũ with no ambiguity
aversion.

To solve the following problem (17), we firstly determine the
worst-case measure Q∗ by solving the inner infimum problem,
and then obtain the optimal strategies by solving the outer supre-
mum problem under the measure Q∗. So in Definition 2.1, we
give the assumption that the boundedness conditions only need
to hold under the measure Q∗.

In this paper, we assume that the insurer is aware of the
difficulty to get the precise model parameters which are esti-
mated under the real measure P, and she is skeptical about the
parameters. In this case, we call the insurer to be ambiguity-
averse, she faces the robust optimal investment and reinsurance
problem under the alternative measure Q. This means that she
finds a robust optimal control which is the best choice in some
worst-case models. If the insurer’s investment objective is to
maximize the exponential utility of the terminal surplus of the
company, following Branger and Larsen (2013) and Maenhout
(2004), we assume that the insurer faces the following modified
optimization problem

sup
u∈U

inf
Q∈Q

EQ
[
U(Xu(T )) +

∫ T

0
Ψ (s)ds

]
, (17)

where Ψ (s) :=
γ 2
0 (s)

2ψ0(s)
+

γ 2
1 (s)

2ψ1(s)
+

γ 2
2 (s)

2ψ2(s)
. The expectation is calculated

under the alternative measure Q defined by γ (t), the insurer
determines the measure Q by minimizing the expected utility
which means that the worst case is considered. We mark the
chosen measure which describes the worst-case as Q∗. At the
same time, there is a penalty for moving away from the reference
model, which is given by the second term of the expectation. This
distance is measured by the weighted relative entropy arising
from diffusion risk. By the similar calculation of Branger and
Larsen (2013), the increase in relative entropy from t to t + dt
equals
1
2
[γ 2

0 (t) + γ 2
1 (t) + γ 2

2 (t)]dt. (18)

The functions ψ0(s), ψ1(s) and ψ2(s) capture the insurer’s ambi-
guity aversion degree with respect to (w.r.t.) the diffusion risk
from the insurance market, risky asset and the stochastic factor
process. These functions measure the strength of the preference
for robustness and are assumed to be nonnegative.

For convenience of analysis, refer to the method of Maenhout
(2004), we assume that the preference functions ψ0(t), ψ1(t) and
ψ2(t) are state dependent and have the form

ψ0(t) = −
β0

mV (t, x, α)
, ψ1(t) = −

β1

mV (t, x, α)
,

ψ2(t) = −
β2

mV (t, x, α)
, (19)

where β0, β1 and β2 are nonnegative parameters representing the
ambiguity-averse level of insurer to the diffusion risk from the
insurance market, risky asset and the stochastic factor process,
respectively. Now we define the insurer’s indirect utility function
by

V (t, x, α) = sup
u∈U

inf
Q∈Q

EQ
t,x,α

[
U(Xu(T )) +

∫ T

t
Ψ (s)ds

]
. (20)

3. Explicit solution for the problem

3.1. Robust optimal reinsurance and investment strategies

In this section, we try to solve the optimization problem (17).
Notice that the control u(t) = (π (t), q(t)) and the processes
γ (t) = (γ0(t), γ1(t), γ2(t)) take values in the value spaces given by
U = R × [0, 1]z and R3 respectively. According to the principle
of dynamic programming and following the method developed
by Anderson et al. (2003), we obtain the robust Hamilton–Jacobi–
Bellman (HJB) equation for the optimization problem (17) as
follows (for the sake of brevity, we omit the variable (t, x, α) in
some functions such as V , ψi for i = 0, 1, 2, and µ):

sup
u∈U

inf
(γ0,γ1,γ2)∈R3

{
Vt + Vx[c − δ(q)

−
∑z

l=1 alql − γ0

√∑z
l=1 σ

2
l q

2
l +

∑z
i̸=j qiqjλµiµj

+π (µ− r − γ1
µ−r
θ
√
α
) + rx] + Vα[k(φ − α)

−
√
α(k1γ1 + k2γ2)] +

1
2Vxx

[ ∑z
l=1 σ

2
l q

2
l

+
∑z

i̸=j qiqjλµiµj +
(µ−r)2

θ2α
π2

]
+

1
2α(k

2
1 + k22)Vαα +

k1π
θ

(µ− r)Vxα

+
1
2 [
γ 2
0
ψ0

+
γ 2
1
ψ1

+
γ 2
2
ψ2

]

}
= 0,

(21)

for ∀ (t, x, α) ∈ [0, T ] × R × R+ and the terminal condition
V (T , x, α) = −

1
m e−mx. Now we aim to derive the solution to the

HJB Eq. (21). Inspired by Zheng et al. (2016), we conjecture that
the solution of Eq. (21) is specified by the following form

H(t, x, α) = −
1
m

exp{−mxer(T−t)
+ M(t) + N(t)α}, (22)

where M(t) and N(t) are only functions of time t , which will need
to be determined later with the boundary conditions M(T ) = 0,
N(T ) = 0. Then the corresponding partial derivatives are given
by

Ht = [mxrer(T−t)
+ M ′(t) + N ′(t)α]H,

Hx = −mer(T−t)H, Hxx = m2e2r(T−t)H;

Hα = N(t)H, Hxα = −mer(T−t)N(t)H, Hαα = N2(t)H.
We first fix u and take the derivative of the inside of {·} in Eq. (21)
w.r.t. γ0, γ1, γ2, respectively. Based on the first-order condition,
we obtain the minimum point γ ∗(t, α) = (γ ∗

0 (t), γ
∗

1 (t, α), γ
∗

2 (t, α))
as:⎧⎪⎨⎪⎩
γ ∗

0 (t) = β0er(T−t)
√∑z

l=1 σ
2
l q

2
l +

∑z
i̸=j qiqjλµiµj,

γ ∗

1 (t, α) = β1er(T−t)π (t)µ(t)−r
θ
√
α

−
β1
m k1N(t)

√
α,

γ ∗

2 (t, α) = −
β2
m k2N(t)

√
α,

(23)

which means that γ ∗(t, α) minimizes the term in {·} when u is
fixed. Substituting Eq. (23) and the partial derivatives of H(t, x, α)
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into Eq. (21), we obtain

M ′(t) + αN ′(t) − mcer(T−t)
+ k(φ − α)N(t)

+
1
2
α[(
β1

m
+ 1)k21 + (

β2

m
+ 1)k22]N

2(t)

+ inf
π∈R

{1
2
m(m + β1)e2r(T−t) (µ− r)2

θ2α
π2

−
(m + β1)k1

θ
(µ− r)er(T−t)N(t)π (24)

−mer(T−t)(µ− r)π
}

+ inf
q∈[0,1]z

{G(q)} = 0,

where G(q) = mer(T−t)
[δ(q) +

∑z
l=1 alql] +

1
2m(m + β0)e2r(T−t)

(
∑z

l=1 σ
2
l q

2
l +

∑z
i̸=j qiqjλµiµj).

Now we take the derivative of the inside of the first {·} in
Eq. (24) w.r.t. π , which ensures that the minimize point is

π∗(t, α) =
θ2α

µ(t) − r
e−r(T−t)

[
1

m + β1
+

k1
mθ

N(t)]

=
θ
√
α

σ (t)
e−r(T−t)

[
1

m + β1
+

k1
mθ

N(t)]. (25)

Next, we take the derivative of the inside of the second {·} in
Eq. (24) w.r.t q. For any t ∈ [0, T ], we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂G
∂ql

= mer(T−t)
[−ηal − 2(1 + η)ξ ((1 − ql)σ 2

l

+
∑z

j=1,j̸=l(1 − qj)λµlµj)]

+ m(m + β0)e2r(T−t)(σ 2
l ql +

∑z
j=1,j̸=l qjλµlµj),

∂2G
∂q2l

= mer(T−t)σ 2
l [2ξ (1 + η) + (m + β0)er(T−t)

],

∂2G
∂ql∂qk

=
∂2G
∂qk∂ql

= mer(T−t)λµlµk[2ξ (1 + η) + (m + β0)er(T−t)
],

for l ̸= k, l, k = 1, 2, . . . , z. So

⎡⎢⎢⎢⎢⎢⎢⎣

∂2G
∂q21

∂2G
∂q1∂q2

. . . ∂2G
∂q1∂qz

∂2G
∂q2∂q1

∂2G
∂q22

. . . ∂2G
∂q2∂qz

...
...

. . .
...

∂2G
∂qz∂q1

∂2G
∂qz∂q2

. . . ∂2G
∂q2z

⎤⎥⎥⎥⎥⎥⎥⎦ =

mer(T−t)
[2ξ (1 + η) + (m + β0)er(T−t)

] · A, where

A =

⎡⎢⎢⎢⎢⎣
σ 2
1 λµ1µ2 λµ1µ3 . . . λµ1µz

λµ2µ1 σ 2
2 λµ2µ3 . . . λµ2µz

...
...

...
. . .

...

λµzµ1 λµzµ2 λµzµ3 . . . σ 2
z

⎤⎥⎥⎥⎥⎦ .
By the Lemma 1 of Yuen et al. (2015), A is a positive definite
matrix, which means that the Hessian matrix is also a positive
definite matrix. Thus, G(q) is a convex function w.r.t. q1, . . . , qz .
Therefore, using the first-order optimization conditions, the min-
imizer q̂ = (q̂1, q̂2, . . . , q̂z)⊤ for G(q) satisfies the following
equation

[2ξ (1 + η) + (m + β0)er(T−t)
]A · q̂ = 2ξ (1 + η)A · 1 + η · a, (26)

where 1⊤
= (1, 1, . . . , 1)1×z , a = (a1, a2, . . . , az)⊤. Due to

the fact that A is positive definite matrix, which guarantees the
invertibility of this matrix. Thus the minimizer q̂(t) is

q̂(t) =
2ξ (1 + η)1 + ηA−1

· a
2ξ (1 + η) + (m + β0)er(T−t) . (27)

In Eq. (27), when η = 0, the reinsurance premium degenerates
to the variance premium rate. In this case, the reinsurance pro-
portion for the lth line of business is q̂l(t) =

2ξ
2ξ+(m+β0)er(T−t) , l =

1, 2, . . . , z, which satisfies the condition q̂l(t) ∈ [0, 1] and as
a result it is the optimal reinsurance strategy. When η ̸= 0,
to make sure that the optimal reinsurance proportions satisfy
ql(t) ∈ [0, 1], for l = 1, 2, . . . , z, we need to investigate the
optimal strategy in different cases for the value of the parameters.
Here, for simplicity, we only consider the optimal reinsurance
proportion under the case of z = 2, i.e., the insurance company
has two lines of business. The following ideas and methods are
still useful for deriving optimal results when z > 2.1

Let

U1 = a1σ 2
2 − a2λµ1µ2, U2 = a2σ 2

1 − a1λµ1µ2,

U3 = σ 2
1 σ

2
2 − λ2µ2

1µ
2
2. (28)

For z = 2, Eq. (27) becomes⎧⎨⎩q̂1(t) =
ηU1+2(1+η)ξU3

[2ξ (1+η)+(m+β0)er(T−t)]U3
,

q̂2(t) =
ηU2+2(1+η)ξU3

[2ξ (1+η)+(m+β0)er(T−t)]U3
.

(29)

Note that U1,U2,U3 > 0, thus q̂1(t) > 0, q̂2(t) > 0. Furthermore,
let

t1 =

⎧⎨⎩
T , ηU1 ≤ (m + β0)U3,

T −
1
r ln

ηU1
(m+β0)U3

, (m + β0)U3 < ηU1 < (m + β0)U3erT ,
0, ηU1 ≥ (m + β0)U3erT ,

(30)

and

t2 =

⎧⎨⎩
T , ηU2 ≤ (m + β0)U3,

T −
1
r ln

ηU2
(m+β0)U3

, (m + β0)U3 < ηU2 < (m + β0)U3erT ,
0, ηU2 ≥ (m + β0)U3erT .

(31)

We now discuss the optimal reinsurance strategy under following
different cases.

(1) If U1 ≤ U2, then t1 ≥ t2, so
(i) When 0 ≤ t < t2, the optimal reinsurance proportion

q∗(t) = (q∗

1(t), q
∗

2(t)) = (q̂1(t), q̂2(t)), where, q̂1(t) and q̂2(t) are
given by (29).

(ii) When t ≥ t2, we have q̂2(t) ≥ 1, so q∗

2(t) = 1. Substituting
q∗

2(t) = 1 into the second {·} of Eq. (24) yields the following
optimization problem:

inf
q1

{
mer(T−t)

[(1 + η)((1 − q1)a1 + ξ (1 − q1)2σ 2
1 ) + a1q1 + a2]

+
1
2
m(m + β0)e2r(T−t)

[σ 2
1 q

2
1 + σ 2

2 + 2λq1µ1µ2]

}
. (32)

For t ≤ T , it can be shown that the minimizer of problem (32)
has the form

q̄1(t) =
ηa1 + 2ξ (1 + η)σ 2

1 − λµ1µ2(m + β0)er(T−t)

σ 2
1 [2ξ (1 + η) + (m + β0)er(T−t)]

. (33)

Let

t ′1 = T −
1
r
ln

ηa1
(m + β0)(σ 2

1 + λµ1µ2)
. (34)

Then for t2 ≤ t ≤ t ′1, the optimal reinsurance strategy is
(q∗

1(t), q
∗

2(t)) = (q̄1(t), 1).
(iii) For t ′1 ≤ t ≤ T , it is easy to see that (q∗

1(t), q
∗

2(t)) = (1, 1).
(2) If U1 > U2, then t1 < t2, so

1 Since when z gets bigger, the possible cases will increase geometrically,
which leads to many cases need to be discussed, and the analysis process
becomes challenging and complicated. We can only discuss the solution case
by case when z > 2.
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(i) When 0 ≤ t < t1, we have (q∗

1(t), q
∗

2(t)) = (q̂1(t), q̂2(t)),
where, q̂1(t) and q̂2(t) are given by (29).

(ii) When t ≥ t1, we have q̂1(t) > 1, so q∗

1(t) = 1. Substituting
q∗

1(t) = 1 into the second {·} of Eq. (24), we obtain the following
optimization problem:

inf
q2

{
mer(T−t)

[(1 + η)((1 − q2)a2 + ξ (1 − q2)2σ 2
2 ) + a1 + a2q2]

+
1
2
m(m + β0)e2r(T−t)

[σ 2
1 + σ 2

2 q
2
2 + 2λq2µ1µ2]

}
. (35)

For t ≤ T , the minimizer of problem (35) has the form

q̄2(t) =
ηa2 + 2ξ (1 + η)σ 2

2 − λµ1µ2(m + β0)er(T−t)

σ 2
2 [2ξ (1 + η) + (m + β0)er(T−t)]

. (36)

Let

t ′2 = T −
1
r
ln

ηa2
(m + β0)(σ 2

2 + λµ1µ2)
. (37)

Then for t1 ≤ t < t ′2, the optimal reinsurance strategy is
(q∗

1(t), q
∗

2(t)) = (1, q̄2(t)).
(iii) For t ′2 ≤ t ≤ T , it is easy to see that (q∗

1(t), q
∗

2(t)) = (1, 1).
Now substituting q∗(t) and π∗(t) into Eq. (24), and separating

the variables with and without α, respectively, we derive the
following equations

N ′(t) − (k + θk1)N(t) +
m + β2

2m
k22N

2(t) −
mθ2

2(m + β1)
= 0, (38)

M ′(t) − mcer(T−t)
+ kφN(t) + G(q∗

1(t), q
∗

2(t)) = 0 (39)

with the boundary conditions N(T ) = 0 and M(T ) = 0. Solving
Eq. (38), we obtain

N(t) =
b3[1 − eb1(T−t)

]

2b1 + (b1 + b2)[eb1(T−t) − 1]
, (40)

where

b1 =

√
(k + θk1)2 +

m + β2

m + β1
k22θ2, b2 = k+θk1, b3 =

mθ2

m + β1
.

(41)

To solve Eq. (39), we should discuss the solution under the
following cases.

Case 1: U1 ≤ U2.
(i) When 0 ≤ t < t2, we get

M(t) = M1(t) =

∫ T

t
[−mcer(T−s)

+kφN(s)+G(q̂1(s), q̂2(s))]ds+ c1,

(42)

where c1 is a constant that will be determined later.
(ii) When t2 ≤ t < t ′1, we have

M(t) = M2(t) =

∫ T

t
[−mcer(T−s)

+ kφN(s) + G(q̄1(s), 1)]ds + c2,

(43)

where the constant c2 also will be determined later.
(iii) When t ′1 ≤ t ≤ T , we get

M(t) = M3(t) =

∫ T

t
[−mcer(T−s)

+ kφN(s) + G(1, 1)]ds. (44)

To ensure that H(t, x, α) is the classical solution of HJB Eq. (21),
we require H(t, x, α) ∈ C1,2,2 for any (t, x, α) ∈ [0, T ] × R × R+,
which means M1(t2) = M2(t2), M2(t ′1) = M3(t ′1), M

′

1(t2) = M ′

2(t2)
and M ′

2(t
′

1) = M ′

3(t
′

1) must hold. Thus the constants c1 and c2

are given by c1 =
∫ T
t2
[G(q̄1(s), 1) − G(q̂1(s), q̂2(s))]ds + c2 and

c2 =
∫ T
t ′1
[G(1, 1) − G(q̄1(s), 1)]ds.

Case 2: U1 > U2.
(i) When 0 ≤ t < t1, we get

M(t) = M4(t) =

∫ T

t
[−mcer(T−s)

+kφN(s)+G(q̂1(s), q̂2(s))]ds+ c3,

(45)

where c3 is a constant that will be determined later.
(ii) When t1 ≤ t ≤ t ′2, we have

M(t) = M5(t) =

∫ T

t
[−mcer(T−s)

+ kφN(s) + G(1, q̄2(s))]ds + c4,

(46)

where c4 is a constant that will be determined later.
(iii) When t ′2 < t ≤ T , we get

M(t) = M3(t) =

∫ T

t
[−mcer(T−s)

+ kφN(s) + G(1, 1)]ds. (47)

To ensure that H(t, x, α) ∈ C1,2,2 for any (t, x, α) ∈ [0, T ]×R×R+,
the conditions M4(t1) = M5(t1), M3(t ′2) = M5(t ′2), M

′

4(t1) = M ′

5(t1)
and M ′

3(t
′

2) = M ′

5(t
′

2) should be satisfied. Thus, we derive c3 =∫ T
t1
[G(1, q̄2(s)) − G(q̂1(s), q̂2(s))]ds + c4 and c4 =

∫ T
t ′2
[G(1, 1) −

G(1, q̄2(s))]ds.
Summarizing the above results, we obtain the following veri-

fication theorem.

Theorem 3.1. For the optimal control problem (17) with z = 2, if
the parameters satisfy technical condition (54) and⎧⎨⎩

24m2θ2

(m+β1)2
−

56mθk1b3
(m+β1)(b1+b2)

+
32k21b

2
3

(b1+b2)2
≤

k2

2(k21+k22)
,

24m2θ2

(m+β1)2
≤

k2

2(k21+k22)
.

(48)

with b1, b2 and b3 given in (41). And let q̂1(t), q̂2(t), q̄1(t), q̄2(t) be
given in (29), (33) and (36), respectively. Then,

(1) When U1 ≤ U2 (see Eq. (28)), the robust optimal reinsurance
strategies of an AAI with exponential utility function are

(q∗

1(t), q
∗

2(t)) =

{(q̂1(t), q̂2(t)), 0 ≤ t < t2,
(q̄1(t), 1), t2 ≤ t < t ′1,
(1, 1), t ′1 ≤ t < T ,

(49)

with t2 and t ′1 given in Eqs. (31) and (34) for any t ∈ [0, T ]. The
value function is given by

V (t, x, α) = H(t, x, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1
m exp{−mxer(T−t)

+M1(t) + N(t)α}, 0 ≤ t < t2,

−
1
m exp{−mxer(T−t)

+M2(t) + N(t)α}, t2 ≤ t < t ′1,

−
1
m exp{−mxer(T−t)

+M3(t) + N(t)α}, t ′1 ≤ t < T ,

(50)

with N(t) and Mi(t), i = 1, 2, 3 given in Eqs. (40)–(44), respectively.
(2) When U1 > U2, the robust optimal reinsurance strategies of

an AAI with exponential utility function are

(q∗

1(t), q
∗

2(t)) =

{(q̂1(t), q̂2(t)), 0 ≤ t < t1,
(1, q̄2(t)), t1 ≤ t < t ′2,
(1, 1), t ′2 ≤ t < T ,

(51)
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with t1 and t ′2 given in Eqs. (30) and (37) for any t ∈ [0, T ]. The
value function is given by

V (t, x, α) = H(t, x, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1
m exp{−mxer(T−t)

+M4(t) + N(t)α}, 0 ≤ t < t1,

−
1
m exp{−mxer(T−t)

+M5(t) + N(t)α}, t1 ≤ t < t ′2,

−
1
m exp{−mxer(T−t)

+M3(t) + N(t)α}, t ′2 ≤ t < T ,

(52)

with M4(t) and M5(t) given in Eqs. (45) and (46), respectively.
In both cases, the robust optimal investment strategy is given

in Eq. (25) by replacing α with the stochastic process α(t). The
worst-case γ ∗(t, α(t)) is given by⎧⎪⎪⎨⎪⎪⎩
γ ∗

0 (t) = β0er(T−t)
√
σ 2
1 q

∗

1(t)
2
+ σ 2

2 q
∗

2(t)
2
+ 2q∗

1(t)q
∗

2(t)λµ1µ2,

γ ∗

1 (t, α(t)) =
β1θ

m+β1

√
α(t),

γ ∗

2 (t, α(t)) = −
β2
m N(t)k2

√
α(t).

(53)

Proof. See Appendix. □

Remark 3.1. The Novikov’s condition holds for γ ∗(t, α(t)) =

(γ ∗

0 (t), γ
∗

1 (t, α(t)), γ
∗

2 (t, α(t))), if the parameters satisfy the con-
dition:
β2
1θ

2

(m + β1)2
+
β2
2k

2
2n

2

m2 <
k2

k21 + k22
, (54)

where n =
b3

b1+b2
. This condition can be induced by the similar

method in Corollary 4.1 of Yi et al. (2013), here we omit this
process.

Remark 3.2. Based on Eq. (25), we find that the robust optimal
investment strategy is Markovian on α(t) and independent of the
parameters in insurance market, which depends only on the in-
terest rate, ambiguity-aversion coefficient, and parameters based
on the financial market. From Eqs. (49) and (51), we find that
the optimal proportional reinsurance strategy is a deterministic
function on time t and also independent of the price parame-
ters of the risky asset. Besides, the robustness on the optimal
strategy just enlarges the insurer’s risk aversion level under the
exponential utility. Thus, the ambiguity aversion level can be
understood as an extra risk aversion parameter. Similar results
also are shown in Maenhout (2004) and Yi et al. (2013) under the
power and exponential utility functions, respectively. It is worth
pointing out that, under the framework of game theory, Pun
(2018) investigates the robust time-inconsistent portfolio prob-
lem with state-dependent risk aversion. He provides an example
that under the mean–variance criteria the robustness effect on
the equilibrium strategy is complicated, in which the equilibrium
strategy has highly nonlinear relationship with the ambiguity
aversion level.

Remark 3.3. If the insurance company has only one business,
the claim size random variable is X (1)

i , and claim intensity is λ1
(i.e. λ2 = · · · = λm = λ = 0), the reinsurance premium is
calculated under expectation principle (η > 0, ξ = 0) and the
reinsurance strategy q1(t) ∈ (0,+∞). Moreover,

(i) if the price process of the risky asset satisfies CEV model
(the corresponding parameters are set as those in Remark 2.4),

then

q∗

1(t) =
a1η

(m + β0)σ 2
1
e−r(T−t), (55)

π∗(t) =
(µ− r) +

(µ−r)2
2r (1 − e−2βr(T−t))

(m + β1)ϱ2S2β (t)er(T−t) . (56)

This result is consistent with the optimal strategy in Zheng et al.
(2016), so our model is extension of Zheng et al. (2016).

(ii) if the price process of the risky asset satisfies the Heston’s
stochastic volatility model (the corresponding parameters are set
as those in Remark 2.5), and the ambiguity aversion coefficients
β0 = β1 = β2, then the optimal reinsurance strategy is also
presented by Eq. (55) and the optimal investment strategy is
simplified by

π∗(t) = e−r(T−t)
[

θ

m + β1
+
σ0ρ

m
N(t)]. (57)

In this case, the optimal strategy in our model is degenerated to
the optimal strategy in Yi et al. (2013).

3.2. The case of ambiguity-neutral

In this subsection, we assume that the insurer is ambiguity-
neutral, which means that all the ambiguity-aversion coefficients
satisfy β0 = β1 = β2 = 0. Under the real measure P, the surplus
process can be described by Eq. (11). Meanwhile, the indirect util-
ity function is defined by Ṽ (t, x, α) = supu∈Ũ EP

t,x,α[−
1
m e−mXu(T )

].
Then the corresponding HJB equation is

sup
u∈U

{
Ṽt + Ṽx[c − δ(q) −

∑z
l=1 alql

+π (µ− r) + rx] + Ṽα[k(φ − α)]

+
1
2 Ṽxx[

∑z
l=1 σ

2
l q

2
l +

∑z
i̸=j qiqjλµiµj +

(µ−r)2

θ2α
π2

]

+
1
2α(k

2
1 + k22)Ṽαα +

k1π
θ

(µ− r)Ṽxα

}
= 0.

(58)

For z = 2, using the method similar to solve HJB equation (21)
and Verification Theorem similar to Theorem 3.1, the optimal
investment strategy is

π̃∗(t, α(t)) =
θ2α(t)
µ(t) − r

e−r(T−t)
[
1
m

+
k1
mθ

Ñ(t)], (59)

where

Ñ(t) =
b̃3[e1−b̃1(T−t)

]

2b̃1 + (b̃1 + b̃2)[eb̃1(T−t) − 1]
,

b̃1 =

√
(k + θk1)2 + k22θ2, b̃2 = b2, b̃3 = θ2. (60)

Let

t̃1 =

⎧⎨⎩
T , ηU1 ≤ mU3,

T −
1
r ln

ηU1
mU3

, mU3 < ηU1 < mU3erT ,
0, ηU1 ≥ mU3erT ,

and

t̃2 =

⎧⎨⎩
T , ηU2 ≤ mU3,

T −
1
r ln

ηU2
mU3

, mU3 < ηU2 < mU3erT ,
0, ηU2 ≥ mU3erT .

Let t̃ ′1 = T −
1
r ln

ηa1
m(σ2

1 +λµ1µ2)
, t̃ ′2 = T −

1
r ln

ηa2
m(σ2

2 +λµ1µ2)
, q̃1(t) =

q̂1(t)|β0=0, q̃2(t) = q̂2(t)|β0=0, ¯̄q1(t) = q̄1(t)|β0=0, ¯̄q2(t) = q̄2(t)|β0=0

and G̃(q1(t), q2(t)) = G(q1(t), q2(t))|β0=0. Then the optimal rein-
surance strategy q̃∗(t) = (q̃∗

1(t), q̃
∗

2(t)), and corresponding value
function Ṽ (t, x, α) are given as follows:
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(1) If U1 ≤ U2, the optimal reinsurance strategies are

(q̃∗

1(t), q̃
∗

2(t)) =

⎧⎪⎨⎪⎩
(q̃1(t), q̃2(t)), 0 ≤ t < t̃2,
( ¯̄qt (t), 1), t̃2 ≤ t < t̃ ′1,
(1, 1), t̃ ′1 ≤ t < T ,

(61)

for any t ∈ [0, T ] and the value function is given by

Ṽ (t, x, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1
m exp{−mxer(T−t)

+ M̃1(t) + Ñ(t)α},

0 ≤ t < t̃2,

−
1
m exp{−mxer(T−t)

+ M̃2(t) + Ñ(t)α},

t̃2 ≤ t < t̃ ′1,

−
1
m exp{−mxer(T−t)

+ M̃3(t) + Ñ(t)α},

t̃ ′1 ≤ t < T ,

(62)

where

M̃1(t) =

∫ T

t
[−mcer(T−s)

+ kφÑ(s) + G̃(q̃1(s), q̃2(s))]ds + c5,

M̃2(t) =

∫ T

t
[−mcer(T−s)

+ kφÑ(s) + G̃( ¯̄q1(s), 1)]ds + c6,

M̃3(t) =

∫ T

t
[−mcer(T−s)

+ kφÑ(s) + G̃(1, 1)]ds,

c6 =
∫ T
t̃ ′1
[G̃(1, 1) − G̃( ¯̄q1(s), 1)]ds and c5 =

∫ T
t̃2
[G̃( ¯̄q1(s), 1) −

G̃(q̃1(s), q̃2(s))]ds + c6 to ensure that Ṽ (t, x, α) ∈ C1,2,2 for any
(t, x, α) ∈ [0, T ] × R × R+.

(2) If U1 > U2, the optimal reinsurance strategies are

(q̃∗

1(t), q̃
∗

2(t)) =

⎧⎪⎨⎪⎩
(q̃1(t), q̃2(t)), 0 ≤ t < t̃1,
(1, ¯̄q2(t)), t̃1 ≤ t < t̃ ′2,
(1, 1), t̃ ′2 ≤ t < T ,

(63)

for any t ∈ [0, T ] and the value function is given by

Ṽ (t, x, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1
m exp{−mxer(T−t)

+M̃4(t) + Ñ(t)α}, 0 ≤ t < t̃1,

−
1
m exp{−mxer(T−t)

+M̃5(t) + Ñ(t)α}, t̃1 ≤ t < t̃ ′2,

−
1
m exp{−mxer(T−t)

+M̃3(t) + Ñ(t)α}, t̃ ′2 ≤ t < T ,

(64)

where

M̃4(t) =

∫ T

t
[−mcer(T−s)

+ kφÑ(s) + G̃(q̃1(s), q̃2(s))]ds + c7,

M̃5(t) =

∫ T

t
[−mcer(T−s)

+ kφÑ(s) + G̃(1, ¯̄q2(s))]ds + c8,

c8 =
∫ T
t̃ ′2
[G̃(1, 1) − G̃(1, ¯̄q2(s))]ds and c7 =

∫ T
t̃1
[G̃(1, ¯̄q2(s)) −

G̃(q̃1(s), q̃2(s))]ds + c8 to ensure that Ṽ (t, x, α) ∈ C1,2,2 for any
(t, x, α) ∈ [0, T ] × R × R+.

Comparing Eqs. (59), (61), (63) with Eqs. (25), (49), (51), re-
spectively, we find that the optimal strategy of an ANI is the
special case of the strategy for an AAI when the ambiguity-
aversion coefficients β0 = β1 = β2 = 0. Compared with ANI,
the reinsurance retention proportion of the AAI is more lower,
which means that the AAI is more conservative.

Remark 3.4. When the insurance company has two lines of busi-
ness, i.e., z = 2, the reinsurance premium is calculated under the

variance principle (η = 0), and the insurer is ambiguity-neutral
(β0 = 0), then Eq. (29) becomes

q̂1(t) = q̂2(t) =
2ξ

2ξ + mer(T−t) ∈ (0, 1). (65)

Thus the optimal reinsurance strategies q∗

1(t) = q∗

2(t) = q̂1(t),
which are consistent with the strategies in Liang and Yuen (2016).
In our model, the reinsurance premium is calculated under the
generalized mean–variance premium principle. Compared with
Eq. (65), we find that the robust optimal reinsurance strategies
depend on not only the safety loading, time and interest rate,
but also the ambiguity-aversion coefficient, the claim amount and
intensity parameters. It is different from the optimal reinsurance
strategies under the variance premium principle (Liang and Yuen,
2016).

4. Suboptimal strategy

To evaluate the importance of taking ambiguity into account,
we determine how much an insurer suffers from ignoring it. Sup-
pose that an AAI does not take the optimal strategy u∗(t, α(t)) =

(π∗(t, α(t)), q∗(t)), but makes her investment decision as if she
is an ANI. In other words, she follows the optimal strategy
ũ∗(t, α(t)) = (π̃∗(t, α(t)), q̃∗(t)) given in Section 3.2 (In this
section, to conveniently compare with the value function in Sec-
tion 3.1, we also consider the case of z = 2). In this case, we call
the strategy as the suboptimal strategy. The aim of this section
is to quantify the wealth-equivalent utility loss of an insurer
who follows a suboptimal investment and reinsurance strategies.
More specifically, we will assess the importance of taking into
account model uncertainty in the model. When the AAI adopts
the suboptimal strategy, the corresponding value function under
the given strategy ũ∗ is defined by

V̂ (t, x, α) = inf
Q∈Q

EQ
t,x,α

[
U(X ũ∗

(T )) +

∫ T

t
Ψ (s)ds

]
. (66)

We can solve problem (66) using the similar HJB equation as that
in Section 3.1. We find that the worst-case measure γ ∗(t, α(t)) for
the problem (66) has the similar expression as Eq. (23) only need
to change N(t) to function N̂(t). The AAI with ambiguity-aversion
coefficients βi > 0, i = 0, 1, 2 adopts the strategy ũ∗(t, α(t))
as if she is an ANI under the worst-case measure γ ∗(t, α(t)).
Via a calculation that is parallel to the method in Section 3, we
obtain the value function for optimization problem (66) under the
suboptimal strategy ũ∗(t, α(t)) as follows:

V̂ (t, x, α) = −
1
m

exp[−mxer(T−t)
+ M̂(t) + N̂(t)α], (67)

where N̂(t) and M̂(t) satisfy the following ODEs:

N̂ ′(t) − [k + (1 +
β1

m
)k1θ (1 +

k1
θ
Ñ(t))]N̂(t)

+
1
2
[(1 +

β1

m
)k21 + (1 +

β2

m
)k22]N̂

2(t)

+
(m + β1)θ2

2m
[1 +

k1
θ
Ñ(t)]2 − θ2[1 +

k1
θ
Ñ(t)] = 0, (68)

M̂ ′(t) − mcer(T−t)
+ kφN̂(t) + G(q̃∗

1(t), q̃
∗

2(t)) = 0, (69)

with boundary conditions N̂(T ) = 0 and M̂(T ) = 0, where Ñ(t)
is given by (60). Although it is hard to obtain the closed-form
solution to the differential equation (68) due to the variable coef-
ficients, we can solve this equation with Runge–Kutta numerical
method.

By definition, the suboptimal strategy ũ∗(t, α(t)) will gener-
ate a lower expected utility than that by the optimal strategy
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Table 1
Basic parameters.
T α1 α2 λ1 λ2 λ η ξ r m β0 β1 β2

10 2 3 3 4 1 0.3 0.5 0.05 1.2 1 1 1

u∗(t, α(t)) for the same initial condition. i.e., V̂ (t, x, α) ≤ V
(t, x, α). In the literature such as Larsen and Munk (2012) and
Branger and Larsen (2013), to assess the importance of taking
ambiguity into account, they assume that if an investor follows
a suboptimal strategy, there will be a wealth-equivalent utility
loss. In their models, the power utility is adopted, and the utility
loss is measured by the percentage of the initial wealth that the
investor is willing to give up to know the optimal strategy. In our
model, because of the exponential utility that is adopted, to make
the definition of the loss function understandable and simultane-
ously to make the mathematical calculation easier, we follow the
similar idea mentioned in the above literature. When the insurer
adopts the suboptimal strategy ũ∗(t, α(t)), we measure the loss
as the amount of the initial wealth x that the insurer is willing to
give up to know the optimal strategy. Namely, the loss J is defined
by

V (t, x − J, α) = V̂ (t, x, α). (70)

From (22) and (67), it then follows that

J ≡ J(t) =
1
m

e−r(T−t)
[(M̂(t) − M(t)) + (N̂(t) − N(t))α(t)]. (71)

The loss function J(t) measures the utility loss of the AAI when
she adopts the suboptimal strategy ũ∗(t, α(t)).

5. Numerical examples

In this section, we present some numerical examples to ver-
ify the theoretical results and give some sensitivity analysis on
the optimal strategy. In order to analyze conveniently, we only
consider that there are two lines of business in the insurance
company (i.e., z = 2). Similar to Yuen et al. (2015) and Liang and
Yuen (2016), we assume that the claim sizes random variables
X (1)
i and X (2)

i follow exponential distribution with parameters α1
and α2, respectively. For the price process of the risky asset, we
only consider the CEV model and the Heston’s model as two
special cases. Unless otherwise stated, the basic parameters are
given in Table 1.

Besides, in the CEV model, the parameters are given by s0 =

0.5, µ = 0.12, ϱ = 0.2, β = 0.3. In the Heston’s model, the
related parameters are given by σ0 = 0.3, ρ = 0.3, θ = 0.5, k =

2, φ = 0.4 and α0 = 0.04.

5.1. Sensitivity analysis of the optimal reinsurance strategy

In this subsection, we focus on the effect of some parameters
on the optimal reinsurance strategy. From Eqs. (49) and (51), we
know that the robust optimal reinsurance strategy is independent
of the parameters in the financial market, which is only related
to the parameters in the insurance market, the risk averse and
ambiguity averse coefficients of the AAI. Based on the parameters
we have set, it follows that U1 < U2 and ηU2 < (m+β0)U3 always
hold, so we set t2 = T and the optimal reinsurance strategy
(q∗

1(t), q
∗

2(t)) = (q̂1(t), q̂2(t)). Figs. 1 and 2 present the impact of
the parameters λ and β0 on the optimal reinsurance proportion.
We find that the insurer will gradually increase the reinsurance
proportion as the time goes on. In Fig. 1, we can see that the
reinsurance proportions in both two lines of business of the
insurance company decrease with the λ increasing, which means
that the higher dependence of the two lines of business in an

Fig. 1. The effect of λ on q∗

1(t) and q∗

2(t).

Fig. 2. The effect of β0 on q∗

1(t) and q∗

2(t).

insurance company, the lower reinsurance retention proportion
is arranged by the insurer. An explanation for this phenomenon
is that the more dependent degree of the two lines business, the
greater potential risks the insurance will bear. So the insurance
company disperses risk by purchasing more reinsurance. From
Fig. 2, we find that when the insurer has higher ambiguity-averse
level β0 on the parameters of insurance market, she will arrange
lower reinsurance retention proportion.

5.2. Sensitivity analysis of the optimal investment strategy

In this subsection, we will investigate the relationship be-
tween the robust optimal investment strategy and the model
parameters under the CEV model and the Heston’s model, re-
spectively. Here we only analyze the strategy at time t = 0.
Fig. 3 shows the influence of the risk averse coefficient m on
the optimal investment strategy. We find that no matter under
the CEV model or the Heston’s model, the more risk averse the
insurer is, the less proportion of the insurance surplus is invested
in the risky asset. In addition, under the same risk averse level,
compared to the ANI, the AAI invests less proportion of the sur-
plus in the risky asset. This result indicates that the AAI is more
conservative due to worrying about the model misspecification.

Fig. 4 presents the effect of β , ambiguity averse parameter
β1 and initial price s0 on the optimal investment strategy under
the CEV model. From Figs. 4a and b, with the increase of the
β1, the optimal investment proportion gradually decreases. The
explanation for this phenomenon is also because of the misspeci-
fication of the model parameter, which causes that the AAI adopts
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Fig. 3. The effect of m on the optimal investment strategy for the CEV and Heston’s models.

Fig. 4. The effect of β and s0 on the optimal investment strategy for the CEV model.

more conservative strategy. In Fig. 4a, under the same ambiguity-
averse level β1, with the increase of β , the optimal investment
proportion will rise as well. For this phenomenon, there is a
possible explanation, since at time t = 0, we let s0 = 0.5,
and the volatility of the risky asset is σ (0) = ϱsβ0 , which is a
monotonically decreasing function about β , and the Sharpe ratio
of the risky asset will increase correspondingly. Thus the AAI will
invest more surplus in the risky asset to obtain excess returns.
However, in Fig. 4b, for a fixed β1, when s0 increases, the volatility
σ (0) correspondingly increases and the Sharpe ratio reduces, the
proportion invested in the risky asset falls naturally.

Fig. 5 shows the effects of the parameters θ , σ0, ρ, β1 and β2
on the optimal investment strategy under the Heston’s model.
Figs. 5a and 5b show that with the increase of the ambiguity-
averse coefficient β1, the corresponding investment proportion
decreases. The explanation for this result is similar to that in
Fig. 4. From Fig. 5c, we find that the influence of the ambiguity-
averse coefficient β2 on the optimal investment strategy is not
obvious. In Fig. 5a, since the Sharpe ratio of the risky asset would
increase with the increase of θ , so its investment proportion will
improve naturally. In Fig. 5b, the increase of σ0 means that the
variance of the volatility becomes larger, thus the AAI will reduce
exposure to the risk. Due to the fact that the parameter ρ is
the correlation coefficient between W1(t) and W2(t), from Fig. 5c,
we find that, with stronger positive correlation, the variance
of the volatility becomes greater, which leads to that the AAI

reduces the risk exposure. On the contrary, with stronger negative
correlation, the variance of the volatility becomes smaller. In this
case, the AAI is willing to accept more risk and invests more
wealth in the risky asset.

5.3. Analysis of the utility loss

In this subsection, we will estimate the utility loss due to
ignoring the risk of model misspecification. Based on the param-
eters we have set, it follows that U1 < U2 and ηU2 ≤ mU3
always hold, so we have t2 = t̃2 = T . Thus, the optimal strategy
is (q∗

1(t), q
∗

2(t)) = (q̂1(t), q̂2(t)), and the suboptimal strategy is
(q̃∗

1(t), q̃
∗

2(t)) = (q̃1(t), q̃2(t)) for ∀t ∈ [0, T ]. Furthermore, using
Eq. (71) to calculate the utility loss function from time t = 0,
we have

J(0) = −
1
m

e−rT [(M1(0) − M̂1(0)) + (N(0) − N̂(0))α0
]
,

where

M1(0) =

∫ T

0
[−mcer(T−s)

+ kφN(s) + G(q̂1(s), q̂2(s))]ds,

M̂1(0) =

∫ T

0
[−mcer(T−s)

+ kφN̂(s) + G(q̃1(s), q̃2(s))]ds.
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Fig. 5. The effect of θ , σ0 , ρ, β1 and β2 on the optimal investment strategy for the Heston’s model.

Table 2
Utility loss under the CEV model.
T 2 4 6 8 10

Utility loss J(0) 0.5143 1.0189 1.5168 2.0094 2.4937

Table 3
Utility loss under the Heston’s model.
T 2 4 6 8 10

Utility loss J(0) 0.4791 0.9543 1.4221 1.8839 2.3430

Thus,

J(0) = −
1
m

e−rT
[∫ T

0
[kφ(N(s) − N̂(s)) + G(q̂1(s), q̂2(s))

− G(q̃1(s), q̃2(s))]ds + (N(0) − N̂(0))α0

]
.

Tables 2 and 3 present the value of utility loss J(0) under
different investment terminal times T when the volatility of risky
asset satisfies the CEV and Heston’s models, respectively. In both
cases, we find that ignoring the uncertainty risk of the model will
lead to significant utility loss. In addition, with increase of the
investment time horizon T , the value of utility loss will increase
as well.

6. Conclusion

In this paper, we investigate an optimal investment–reinsura-
nce problem for an insurer with both risk averse and ambiguity
averse, and assume that the insurance company has multiple
dependent risks. Using the robust optimal control method, we
obtain the optimal investment and reinsurance strategies and the
corresponding value function. Lastly, some numerical analyses are
presented. Based on the theoretical and numerical analyses, we
find that: (i) The robust optimal reinsurance strategy depends
on the time, interest rate, ambiguity-aversion coefficient and the
parameters related to the insurance market, the robust optimal
investment strategy only depends on interest rate, ambiguity-
aversion coefficient and the parameters related to the financial
market. (ii) Both the risk aversion and ambiguity aversion levels
of the AAI have significant influence on the optimal strategy. (iii)
With higher dependence degree on the two lines of business, the
retention levels of the reinsurance will become smaller. (iv) Un-
der the assumption of stochastic volatility, no matter it satisfies
the CEV model or the Heston’s model, ignoring the risk of model

uncertainty will lead to significant utility loss, and the longer the
investment time horizon is, the higher the value of utility loss is.
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Appendix. Proof of Theorem 3.1

Since H(t, x, α) ∈ C1,2,2 for any (t, x, α) ∈ [0, T ] × R ×

R+, based on the Corollary 1.2 of Kraft (2004), we can prove
Theorem 3.1 if u∗ and the corresponding candidate value function
H(t, x, α) satisfy the following properties:

(1) u∗ is an admissible strategy;
(2) EQ∗

(supt∈[0,T ] | H(t, Xu∗

(t), α(t)) |
4) < ∞, where Q∗ is

defined by ζ ∗(t) in Eq. (13) with γ ∗(t, α(t));

(3) EQ∗
(
supt∈[0,T ]

⏐⏐⏐ (γ ∗
0 (t))2

2ψ0(t)
+

(γ ∗
1 (t,α(t)))2

2ψ1(t)
+

(γ ∗
2 (t,α(t)))2

2ψ2(t)

⏐⏐⏐2) < ∞.

We will verify above properties one by one. To make the proof
process to be understood easily and logically, we firstly prove
property (2) and then prove property (1).

Proof of property (2). Substituting π∗(t, α(t)) and q∗(t) =

(q∗

1(t), q
∗

2(t)) into Eq. (16) (here we let z = 2), we have

Xu∗

(t) = x0ert +

∫ t

0
er(t−s)[Q1(q∗(s)) − β0er(T−s)Q2(q∗(s))

+
m

m + β1
θ2α(s)e−r(T−s)(

1
m + β1

+
k1
mθ

N(s))
]
ds

+

∫ t

0
er(t−s)

√
Q2(q∗(s))dWQ∗

0 (s)

+

∫ t

0
e−r(T−t)θ

√
α(s)(

1
m + β1

+
k1
mθ

N(s))dWQ∗

1 (s), (72)

where Q1(q∗(s)) = c − δ(q∗(s)) −
∑2

l=1 alq
∗

l (s), Q2(q∗(s)) =∑2
l=1 σ

2
l (q

∗

l (s))
2

+ 2λq∗

1(s)q
∗

2(s)µ1µ2. Inserting (72) into the can-
didate value function, we have

|H(t, Xu∗

(t), α(t))4|

=
1
m4 exp{−4mXu∗

(t)er(T−t)
+ 4M(t) + 4N(t)α(t)}

≤ K1 exp{−4mXu∗

(t)er(T−t)
}

≤ K2 exp
{
−4m

∫ t

0

m
m + β1

θ2α(s)[
1

m + β1
+

k1
mθ

N(s)]ds
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exp
{
−4m

∫ t

0

m
m + β1

θ2α(s)[
1

m + β1
+

k1
mθ

N(s)]ds − 4m
∫ t

0
θ
√
α(s)[

1
m + β1

+
k1
mθ

N(s)]dWQ∗

1 (s)
}

= exp
{
−

∫ t

0
16m2θ2α(s)[

1
m + β1

+
k1
mθ

N(s)]2ds −

∫ t

0
4mθ

√
α(s)[

1
m + β1

+
k1
mθ

N(s)]dWQ∗

1 (s)
}

  
F

· exp
{∫ t

0

(
16m2θ2[

1
m + β1

+
k1
mθ

N(s)]2 − 4m2 θ2

m + β1
[

1
m + β1

+
k1
mθ

N(s)]
)
α(s)ds

}
  

Z

. (75)

Box I.

− 4m
∫ t

0
er(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)

− 4m
∫ t

0
θ
√
α(s)[

1
m + β1

+
k1
mθ

N(s)]dWQ∗

1 (s)
}
, (73)

where K1 and K2 are two constants and satisfy

K1 ≥
1
m4 e

4M(t)+4N(t)α(t), for t ∈ [0, T ], P − a.s.

K2 ≥ K1e−4m[x0erT+
∫ t
0 er(T−s)(Q1(q∗(s))−β0er(T−s)Q2(q∗(s)))ds],

for t ∈ [0, T ].

Note that m
√
Q2(q∗(s))er(T−s) is bounded on s ∈ [0, T ], we find

that the exponential integral

exp
{∫ t

0
−4mer(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)
}

= exp
{∫ t

0
8m2e2r(T−s)Q2(q∗(s))ds

}
· exp

{
−

∫ t

0
8m2e2r(T−s)Q2(q∗(s))ds +

∫ t

0
−4mer(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)
}

  
martingale

.

Consequently, it follows that

EQ∗
(
exp

{∫ t

0
−4mer(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)
})
< ∞. (74)

Then, we aim to find an estimator for

exp
{
−4m

∫ t

0

m
m + β1

θ2α(s)[
1

m + β1
+

k1
mθ

N(s)]ds − 4m

×

∫ t

0
θ
√
α(s)[

1
m + β1

+
k1
mθ

N(s)]dWQ∗

1 (s)
}
.

Notethat, Eq. (75) is given in Box I. For the term F ,

EQ∗

(F 2) = EQ∗
[
exp{−

∫ t

0
32m2θ2α(s)[

1
m + β1

+
k1
mθ

N(s)]2ds

−

∫ t

0
8mθ

√
α(s)[

1
m + β1

+
k1
mθ

N(s)]dWQ
1 (s)}

]
< ∞, (76)

since F 2 is a supermartingale. Due to that −8mθ [ 1
m+β1

+
k1
mθ N(s)]

is bounded on [0, T ], according to Lemma 4.3 in Taksar and Zeng
(2009), F 2 is a martingale.

For the term Z , we have

EQ∗

[Z2
] = EQ∗

[
exp{

∫ t

0

(
32m2θ2[

1
m + β1

+
k1
mθ

N(s)]2

− 8m2 θ2

m + β1
[

1
m + β1

+
k1
mθ

N(s)]
)
α(s)ds}

]
.

Based on the Theorem 5.1 in Taksar and Zeng (2009), the
sufficient condition for EQ∗

(Z2) < ∞ is as follows:

32m2θ2[
1

m + β1
+

k1
mθ

N(t)]2 − 8m2 θ2

m + β1
[

1
m + β1

+
k1
mθ

N(t)] ≤
k2

2(k21 + k22)
. (77)

For ∀t ∈ [0, T ], notice that −
b3

b1+b2
< N(t) < 0, by the property of

quadratic function, when the technical condition (48) is satisfied,
the inequality (77) also holds. Applying (73), we obtain

EQ∗
[⏐⏐⏐H(t, Xu∗

(t), α(t))
⏐⏐⏐4]

≤ K2EQ∗
[
exp

{∫ t

0
−4mer(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)
}]

EQ∗

[F · Z]

≤ K3EQ∗

[F · Z] ≤ K3(EQ∗

[F 2
]EQ∗

[Z2
])1/2 < ∞. (78)

In the above estimation, the first inequality follows from (73) and
due to the fact that WQ∗

0 (t) is independent of WQ∗

1 (t) and WQ∗

2 (t).
The second inequality follows from (74) and due to the following
inequality

K3 ≥ K2EQ∗
[
exp{

∫ t

0
−4mer(T−s)

√
Q2(q∗(s))dWQ∗

0 (s)}
]
.

The third inequality follows from the Cauchy–Schwarz inequality.
And the last inequality is from Eq. (76) and EQ∗

[Z2
] < ∞.

Therefore, property (2) is proved.

Proof of property (1). From the process of solving HJB equation,
we know the optimal strategy u∗(t, α(t)) is progressively measur-
able. From Eqs. (25), (49) and (51), q∗

1(t), q
∗

2(t) are deterministic
and state independent. The optimal strategy π∗(t, α(t)) depends
on the state process α(t), α(t) is a mean-reverting square root
process, although it is generally an unbounded random variable
for any fixed given time, its first and second order moments are
bounded (the detailed proof for the boundedness of its moments
can be found in Mao (1997, p. 308) or Kwok (1998, p. 397)),
thus condition (i) in Definition 2.1 holds. For the condition (ii)
of Definition 2.1, by the proof of property (2), we have deduced
that the solution of Eq. (16) has the form of Eq. (72). On the other
hand, in property (2), we have proved EQ∗[⏐⏐H(t, Xu∗

(t), α(t))
⏐⏐4] <

+∞ for t ∈ [0, T ]. Notice that U(Xu∗

(T )) = H(T , Xu∗

(T ), α(T )),
by the similar method used in the proof of property (2), we can
prove EQ∗[⏐⏐H(T , Xu∗

(T ), α(T ))
⏐⏐] < +∞. Thus, u∗ is an admissible

strategy.
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Proof of property (3). Let Γ (t) =
(γ ∗

0 (t))2m
2β0

+
(γ ∗

1 (t,α(t)))2m
2β1

+

(γ ∗
2 (t,α(t)))2m

2β2
. Since for ∀l > 0, EQ∗

[α(t)l] < ∞, by Eq. (53), we
have EQ∗

[Γ (t)4] < ∞. From Eq. (19), we notice that H(t, x, α) =
β0

−mψ0
=

β1
−mψ1

=
β2

−mψ2
. So we have

EQ∗
(

sup
t∈[0,T ]

⏐⏐⏐ (γ ∗

0 (t))
2

2ψ0(t)
+

(γ ∗

1 (t, α(t)))
2

2ψ1(t)
+

(γ ∗

2 (t, α(t)))
2

2ψ2(t)

⏐⏐⏐2)
= EQ∗

(
sup

t∈[0,T ]

⏐⏐Γ (t)H(t, Xu∗

(t), α(t))
⏐⏐2)

= EQ∗
(

sup
t∈[0,T ]

|Γ (t)|2|H(t, Xu∗

(t), α(t))|
2
)

≤

[
EQ∗

(
sup

t∈[0,T ]

|Γ (t)|4
)] 1

2

×

[
EQ∗

(
sup

t∈[0,T ]

|H(t, Xu∗

(t), α(t))|
4
)] 1

2
< ∞.

The first inequality above follows from the Cauchy–Schwarz in-
equality and the second inequality follows from EQ∗

[Γ (t)4] < ∞

and (78).
Now all properties are proven, using Corollary 1.2 in Kraft

(2004), we can guarantee that u∗ is an optimal strategy and
H(t, x, α) is the corresponding value function, i.e., V (t, x, α) =

H(t, x, α).
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