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a b s t r a c t

This paper studies an optimal investment problem for a defined-contribution (DC) pension plan during
the accumulation phase, where a pension member contributes a predetermined amount of money as a
premium and then themanager of the pension fund invests the premium in a financial market to increase
the value of the accumulation. To protect the rights of pension members who die before retirement,
a return of premiums clause is introduced, under which a member who dies before retirement can
withdraw all the premiums she has contributed. We assume that the financial market consists of one
risk-free asset and multiple risky assets, the returns of the risky assets depend on the market states,
the evolution of the market states is described by a Markov chain, and the transition matrixes are time-
varying. The pension fund manager aims to maximize the expected terminal wealth of each surviving
member at retirement and to minimize the risk measured by the variance of her terminal wealth, which
are two conflicting objectives. We formulate the investment problem as a discrete-time mean–variance
model. Since the model is time-inconsistent, we seek its pre-commitment and equilibrium strategies.
Using the embedding technique and the dynamic programming method, we obtain the pre-commitment
strategy and the corresponding efficient frontier in closed form. Applying the game theory and the
extended Bellman equation, we derive the analytical expressions of the equilibrium strategy and the
corresponding efficient frontier. For the two obtained investment strategies and their corresponding
efficient frontiers, as well as the impact of regime switching and the return of premiums clause on them,
some interesting theoretical and numerical results are found.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the investment management of pension funds has
become increasingly important due to population aging. There are
two basic types of pension plans: the defined contribution (DC)
pension plan and the defined benefit (DB) pension plan. In a DB
pension plan, the benefits are defined in advance by the sponsor.
In a DC pension plan, contributions are fixed and benefits depend
solely on the investment returns of the plan. Compared with the
DB pension plan, the DC pension plan has an advantage to ease the
pressure of the social security system by transferring investment
risk and longevity risk from sponsors to the pension planmembers.
Therefore, a growing number of countries have partially or even
completely shifted from the DB pension plan to the DC pension
plan. Consequently, the asset allocation for DC pension plans,
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which is also the topic of this paper, has attracted much attention
in recent years.

The mean–variance formulation, which was proposed by
Markowitz (1952), has become an important criterion to study the
asset allocation for DC pension plans, especially after the break-
through of solving the dynamic mean–variance model for multi-
period and continuous-time cases by Li and Ng (2000) and Zhou
and Li (2000). However, all of the dynamic investment problems
under the mean–variance criterion are time-inconsistent, because
the non-separability of the variance operator leads to a failure
of the Bellman optimality principle. Fortunately, Strotz (1955)
proposed two ways to deal with the time-inconsistent problems.
The first one is to fix one initial point, then try to find the optimal
strategy that maximizes the objective function without regard to
whether the latter points are optimal or not. This is called a pre-
commitment strategy, which is a global optimal strategy but a
time-inconsistent strategy. The second one is to tackle the time
inconsistency seriously by using the game theory approach to
obtain an equilibrium strategy, which is a time-consistent strategy
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but not a global optimal strategy. Björk and Murgoci (2010, 2014)
and Björk et al. (2017) made a detailed study of this theory on
discrete and continuous-time cases.

Several scholars studied the pre-commitment investment
strategies for DC pension plans. For example, Menoncin and Vigna
(2013) studied a mean–variance target-based optimization prob-
lem for the DC pension plan with stochastic interest rate. Guan
and Liang (2015) considered the mean–variance efficiency of the
DC pension plan with stochastic interest rate and mean-reverting
returns. Nkeki (2013) studied the mean–variance portfolio for the
DC pension plan with stochastic salary and compared it with the
optimal portfolios under the quadratic utility function, the power
utility function and the exponential utility function. Other contri-
butions to this problem include among others, Højgaard and Vigna
(2007), Vigna (2014) and Yao et al. (2016a). Researches on the
equilibrium investment strategy for the DC pension plans are very
few. Wu et al. (2015) studied an equilibrium investment strategy
for the DC pension plan with inflation risk and salary risk. Mean-
while, they compared their strategy with the pre-commitment
investment strategy and obtained some distinct properties of the
two kinds of strategies. Li et al. (2016) investigated an equilibrium
investment strategy for the DC pension plan with stochastic salary
under CEV model. He and Liang (2013) and Wu and Zeng (2015)
also considered the equilibrium investment strategy for the DC
pension plan. In addition, some scholars studied both of the two
strategies for DC pension plans simultaneously. For instance, Sun
et al. (2016) studied both the pre-commitment and equilibrium
strategies for a DC pension plan under a jump–diffusionmodel and
obtained several different characteristics of them.

In the afore-mentioned papers, the returns of the risky assets
are assumed to be independent of the economy state. However,
many investment practice and empirical studies demonstrate that
some macroeconomic variables, such as the exchange rate, the
inflation rate, the interest rate and the GDP growth rate, have
significant impacts on the return and volatility of risky assets,
see Asprem (1989) and Engle et al. (2008). Hence, the economy
states should be considered in the research of the DC pension fund
investment management. Markov regime switching model, which
was originally proposed by Hamilton (1989), has been proven to
be a good way to describe the stochastic evolution of the financial
market states. The model uses a discrete-time or continuous-time
finite state Markov chain to describe the states (regimes) of an
economy. In the previous literature, some scholars investigated the
mean–variance portfolio problems with regime switching, such
as Zhou and Yin (2003), Çakmak and Özekici (2006), Chen et al.
(2014), Wu and Chen (2015) and Chen et al. (2016). Some schol-
ars studied the asset–liability management problems in Markov
regime switching market, such as Chen and Yang (2011) and
Yao et al. (2016b). Some scholars considered the investment–
consumption problems with environment uncertainty, see, e.g., Li
et al. (2008) andGassiat et al. (2014). However, there are only a few
studies related to the investment management of the DC pension
fund with regime-switching. Korn et al. (2011) and Chen and
Delong (2015) considered the continuous-time asset allocation for
DC pension fundswith regime switching. Yao et al. (2016a) studied
themulti-period investmentmanagement for the DC pension fund
with regime switching and mortality risk, and obtained a pre-
commitment investment strategy without considering the time-
consistent investment strategy. To the best of our knowledge, the
time-consistent investment strategy for the DC pension plan with
regime switching under amulti-periodmean–variance framework
has not been studied yet.

In a DC pension plan, since the members may die during the
accumulation process, it is natural that the mortality risk should
be considered in the investmentmanagement of DC pension funds.
Recent contributions to the study of DC pension plans in the pres-
ence of mortality risk can be referred to Yao et al. (2014, 2016a)

andWu and Zeng (2015), in which the mortality risk is considered
from the perspective of the pension planmembers. In reality, how-
ever, many DC pension plans are entrusted to specialized manage-
ment agencies, such as the Chinese enterprise pension fund. Hence,
the pension fund manager should also consider the mortality risk.
In order to protect the rights of thememberswho die before retire-
ment, most of DC pension plans have return of premium clauses. In
this kind of actuarial clauses, the dead members can withdraw all
of the premiums that they have contributed or the premiums that
have been accumulated according to a predetermined interest rate.
He and Liang (2013) are the first to incorporate return of premiums
clauses into asset allocation of DC pension plans. Li et al. (2017),
Sun et al. (2016) and Sheng and Rong (2014) also considered return
of premiums clauses for DC pension plans. However, all of these
papers are within the continuous-time framework. To the best
of our knowledge, the multi-period mean–variance investment
problem for the DC pension plan with a return of premiums clause
has not been studied before.

With the above in mind, the purpose of this work is to study
both the pre-commitment and equilibrium strategies for a DC
pension plan with regime switching and a return of premiums
clause under a multi-period mean–variance framework. Utilizing
the embedding technique and the dynamic programming method,
we obtain the pre-commitment strategy and the corresponding
efficient frontier in closed-form. Applying the game theory and the
extended Bellman equation, we derive analytical expressions for
the equilibrium strategy and the corresponding efficient frontier.
Moreover, numerical analysis is conducted to compare the two
strategies and the two efficient frontiers and analyze the impact of
the regime switching and the return of premiums clause on them
as well.

The main contributions of this paper are as follows. (i) We
consider the multi-period mean–variance investment problem for
a DC pension plan with both regime switching and a return of pre-
miums clause, which was not considered in the afore-mentioned
literature. (ii) In the accumulation phase of the DC pension plan,
different from that in Yao et al. (2014, 2016a) and Wu and Zeng
(2015), the mortality risk is considered from the perspective of the
pension fund manager. (iii) We obtain both the pre-commitment
and equilibrium strategies for our problem in closed form. (iv) The
approach of our derivation is rather technical and may shed light
on the research of the relevant dynamic optimization problems.

The remaining of this paper is organized as follows. We model
the multi-period mean–variance investment problem for the DC
pension plan with regime switching and a return of premiums
clause in Section 2. In Sections 3 and 4, we derive the pre-
commitment strategy and the equilibrium strategy as well as their
corresponding efficient frontiers respectively. In Section 5, we
briefly discuss two special cases of our model. Numerical analysis
with real data is conducted in Section 6. We finish with a conclu-
sion in Section 7.

2. Problem formulation

We are concerned with a DC pension plan in which the accu-
mulation process of a member starts from year 0 or age y and ends
in the year of retirement T or age y + T . During the accumulation
phase, as long as the member is alive, she needs to contribute a
predetermined amount of money as a premium at the beginning
of every year. We assume that the premium in year k is Ck.

To protect the rights of pensionmemberswho die before retire-
ment, we introduce the return of premiums clause: the deadmem-
bers can withdraw all of the premiums that they have contributed.
That is, when a member dies in time interval (k, k + 1] for k =

0, 1, . . . , T−1, all of the premiums
∑k

l=0Cl that she has contributed
will be returned to her at time k + 1, but the appreciation on the
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investments of the accumulation (i.e., the difference between the
return and the accumulation) will be equally distributed to the
surviving members. Denote by qk+y the probability that a person
will die between ages k + y and k + y + 1 given that she is alive
at age k + y, and pk+y = 1 − qk+y be the probability that a person
survives to age k + y + 1 given that she is alive at age k + y.

2.1. Financial market

Suppose that a financial market under consideration has fi-
nite states (regimes) and switches randomly among them. Let
Π = {1, 2, . . . , J} be the state set and ξk be the state at time k
(k = 0, 1, . . . , T − 1). We assume that the state process {ξk, k =

0, 1, . . . , T − 1} follows a Markov chain with time-dependent
transition matrix Q (k) = (qij(k))J×J , where qij(k) = Pr(ξk+1 =

j|ξk = i) is the transition probability from state ξk = i at time k
to state ξk+1 = j at time k + 1 (i, j ∈ Π ).

The pension manager will invest the premiums in the financial
market to increase the value of the accumulation. Assume that the
financial market consists of one risk-free asset and n risky assets.
For k = 0, 1, . . . , T − 1, let rk(> 0) be the return of the risk-
free asset in year k and S lk(ξk) the excess return of risky asset l
(l = 1, 2, . . . , n) over the risk-free asset in year k under a given
state ξk. Then the return of risky asset l in year k is rk + S lk(ξk). For
k = 0, 1, . . . , T − 1, m, l = 1, 2, . . . , n and i ∈ Π , let Sk(i) =(
S1k (i), S

2
k (i), . . . , S

n
k (i)
)′ be the excess return vector, sk(i) = E[Sk(i)]

the expected excess return vector, and covk(i) =

(
σ

m,l
k (i)

)
n×n

the covariance matrix, where σm,l
k (i) = cov

(
Smk (i), S lk(i)

)
is the

covariance between Smk (i) and S lk(i). Throughout the paper, we
denote the transpose of a matrix A by A′. Similar to most of the
existing literature,wemake the following assumptions throughout
this paper.

Assumption 2.1. For k,m = 0, 1, . . . , T − 1, random vectors Sk(i)
and Sm(j) are statistically independent for any i, j ∈ Π when k ̸= m.

Assumption 2.2. covk(i) is positive definite for all k =

0, 1, . . . , T − 1 and all i ∈ Π .

Assumption 2.3. For all k = 0, 1, . . . , T − 1 and all i ∈ Π ,
sk(i) ̸= 0⃗n, where 0⃗n is the n-dimensional zero vector.

Assumption 2.4. Transaction cost and tax are not considered and
short-selling is allowed.

2.2. Wealth process and optimization problem

Wenowgive thewealth process of the pensionmember accord-
ing to the actuarial rules. For k = 0, 1, . . . , T − 1, let πk(ξk) =(
π1
k (ξk), π

2
k (ξk), . . . , π

n
k (ξk)

)′ be the amount invested in the n risky
assets at time k in state ξk, andπ (k) := {πj(ξj), j = k, k+1, . . . , T−

1} represent the strategy throughout years k, k + 1, . . . , T − 1.
Denote by Xπk the wealth of the member under strategy π at time
k, incorporating the contribution Ck at time k, then the amount
invested in the risk-free asset at time k is Xπk + Ck −

∑n
l=1π

l
k(ξk).

According to the return of premiums clause, if a pension member
dies in time interval (k, k + 1], then all the premiums

∑k
l=0Cl con-

tributed by themember will be returned to her at time k+1; if the
member is still alive at time k+1, themanagerwill distribute to the
member the difference between the return and the accumulation
from the members who die during the time interval (k, k + 1],
Fk+1 =

qk+y

[(
Xπk + Ck −

∑n
l=1 π

l
k(ξk)

)
rk +

∑n
l=1 π

l
k(ξk)

(
rk + S lk(ξk)

)
− β

∑k
l=0 Cl

]
pk+y

,

which is an actuarial value, where β is a parameter with values 0
and 1. Obviously, whenβ = 0, the return of premiums clause is not
considered, that is to say, a pension planmember will gain nothing
if she dies during the accumulation phase. While when β = 1,
the pension plan member can get all of the premiums she has ever
contributed when she dies.

Hence, the wealth of the surviving member at time k + 1 is

Xπk+1 =

(
Xπk + Ck −

n∑
l=1

π l
k(ξk)

)
rk +

n∑
l=1

π l
k(ξk)

(
rk + S lk(ξk)

)
+ Fk+1

=

(
Xπk + Ck

)
rk + S ′

k(ξk)πk(ξk) − βqk+y
∑k

l=0 Cl

pk+y

= Ak,kXπk + Bk(β) +
S ′

k(ξk)πk(ξk)
pk+y

, (1)

where Ak,m =
∏m

l=k
rl

pl+y
> 0 (m = k, k + 1, . . . , T − 1), Bk(β) =

Ckrk−βqk+y
∑k

l=0Cl
pk+y

.

Let℘k be the family of filters, denoting the information available
to the pension manager up to time k, i.e.,℘k := σ {(Xπs , ξs)|0 ≤ s ≤

k}, which is a σ -field. π (k) = {πj(ξj), j = k, k + 1, . . . , T − 1},
which is an investment strategy starting from time k, is called time-
k admissible if πj(ξj) is adapted to℘j for all j = k, k+ 1, . . . , T − 1.
Denote by Θk the collection of all time-k admissible investment
strategies.

The pension manager aims to maximize the expected terminal
wealth of each surviving member at the time of retirement and to
minimize the riskmeasured by the variance of her terminalwealth,
which are two conflicting objectives. Therefore, we formulate the
investment problem as the following mean–variance model:

max
π

{E
(
XπT
)
− ωVar

(
XπT
)
}, s.t. Xπk satisfies (1), (2)

where ω > 0 is the risk aversion level of the manager.
As said in the introduction, problem (2) is time-inconsistent and

there are two main methods to handle it.
The first one is that fix an initial point (k, Xπk , ξk) = (0, x0, i0),

and then try to find the optimal investment strategy π̂ (0) for prob-
lem (2), simply disregarding whether the later parts of strategy
π̂ (0) are optimal or not. In previous literature, this strategy is called
a pre-commitment strategy, which is a time-inconsistent but a
global optimal strategy. In this case, the mean–variance model can
be rewritten as

P(ω) : max
π (0)∈Θ0

{E0,x0,i0

(
XπT
)
− ωVar0,x0,i0

(
XπT
)
},

s.t. Xπk satisfies (1)
(3)

where Ek,xk,i
(
XπT
)

= E
(
XπT | Xπk = xk, ξk = i

)
, Vark,xk,i

(
XπT
)

=

Ek,xk,i

((
XπT
)2)

−
(
Ek,xk,i

(
XπT
))2, X0 = x0, ξ0 = i0.

The second one is that take the decision-making process as
a non-cooperative game, and suppose that there is one decision
maker at each time k (k = 0, 1 . . . , T − 1). At time k, under the
current information (xk, i), the decision maker can only choose the
current control πk(i), and the controls in future time k+1, . . . , T −

1 are determined by the future decision makers. This decision-
making process guarantees that the strategy starting fromany time
k is optimal, i.e., the strategy is time-consistent. But since the deci-
sion maker can only choose the current control, she cannot obtain
the global optimal strategy. We call the corresponding strategy
the (subgame perfect Nash) equilibrium strategy. In this case, the
manager updates her target at each time k upon the information
(xk, i) at that time with the objective function

Jk (xk, i, π (k)) = Ek,xk,i
(
XπT
)
− ωVark,xk,i

(
XπT
)
, (4)
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and solves a series of mean–variance models

max
π (k)∈Θk

Jk (xk, i, π (k)) , s.t. Xπk satisfies (1). (5)

For convenience, for k = 0, 1, . . . , T − 1, any time-dependent
m × 1 vector Hl, we define

∑k−1
l=t Hl = 0 for t ≥ k, where 0 is the

m×1 zero vector; any time-dependentm×mmatrixNl, we define∏k−1
l=k Nl = I, where I is them×munitmatrix. In particular, ifm = 1,

then
∑k−1

l=t Hl = 0 and
∏k−1

l=k Nl = 1.

3. Pre-commitment strategy and efficient frontier

In this section, we aim to derive the optimal strategy and effi-
cient frontier of problem P(ω). Due to the non-separability of the
variance operator, problem P(ω) cannot be directly dealt with by
the dynamic programmingmethod. Fortunately, by the embedding
technique of Li and Ng (2000), problem P(ω) can be embedded into
the following separable auxiliary problem:

A(λ, ω) : max
π (0)∈Θ0

{
E0,x0,i0

(
−ω

(
XπT
)2

+ λXπT
)}
,

s.t. Xπk satisfies (1)
(6)

where λ is an auxiliary parameter.
As showed in Li and Ng (2000), we can assert that the optimal

strategy for problem P(ω) is among the optimal solutions for prob-
lems A(λ, ω) with different λ. In particular, an optimal solution
of problem P(ω), if it exists, can be found by selecting λ = 1 +

2ωE0,x0,i0

(
X π̂

A

T

)
, where E0,x0,i0

(
X π̂

A

T

)
is the value corresponding

to the optimal solution π̂A of A(λ, ω). Therefore, obtaining the op-
timal strategy of problem P(ω) boils down to solving the problem
A(λ, ω).

3.1. Solution of auxiliary problem A(λ, ω)

By virtue of the separability of the auxiliary problem A(λ, ω),
the dynamic programming method can be employed to obtain its
optimal solution.

For k = 0, 1, . . . , T − 1 and ξk = i ∈ Π , define the value
function

vk(xk, i) = max
π (k)∈Θk

{
Ek,xk,i

(
−ω

(
XπT
)2

+ λXπT
)}

= max
π (k)∈Θk

{
E
(
−ω

(
XπT
)2

+ λXπT |Xπk = xk, ξk = i
)}
.

Then we have the Bellman equation

vk(xk, i) = max
πk(i)

{
E
(
vk+1

(
Xπk+1, ξk+1

)
|Xπk = xk, ξk = i

)}
. (7)

According to the Markov state transition matrix, Eq. (7) can be
rewritten as

vk(xk, i) = max
πk(i)

⎧⎨⎩
J∑

j=1

qij(k)E
(
vk+1

(
Xπk+1, j

)
|Xπk = xk, ξk = i

)⎫⎬⎭
= max

πk(i)

⎧⎨⎩
J∑

j=1

qij(k)E
(
vk+1

(
Ak,kxk + Bk(β) +

S ′

k(i)πk(i)
pk+y

, j
))⎫⎬⎭(8)

with terminal condition

vT (x, i) = −ωx2 + λx for all i ∈ Π . (9)

In order to solve the recursive equation (8), we introduce some
notations and backward time series. For k = 0, 1, . . . , T − 1 and

i ∈ Π , we define the following notations:

Υk(i) = E(Sk(i)S ′

k(i)) = covk(i) + sk(i)s′k(i), (10)

hk(i) = s′k(i)Υ
−1
k (i)sk(i), (11)

fk(i) = 1 − hk(i), (12)

and construct the backward time series as follows:

Mk =
(
Mk+1 − 2ωA2

k+1,T−1Bk(β)
)
Ak,k, (13)

ηk(i) = fk(i)
J∑

j=1

qij(k)ηk+1(j), (14)

Dk(i) =
M2

k+1

4ωA2
k+1,T−1

hk(i)
J∑

j=1

qij(k)ηk+1(j) +

J∑
j=1

qij(k)Dk+1(j)

+
(
Mk+1Bk(β) − ωA2

k+1,T−1B
2
k(β)

)
ηk(i) (15)

with terminal condition

MT = λ, ηT (i) = 1, DT (i) = 0.

Remark 3.1. For k = 0, 1, . . . , T − 1 and i ∈ Π , since covk(i)
is positive definite by Assumption 2.2, it is clear that Υk(i) is also
positive definite. Furthermore, according to Lemma 2 of Çakmak
and Özekici (2006), we have 0 < hk(i) < 1 and 0 < fk(i) < 1.

According to the recursive formula (13) and its terminal condi-
tion, we get the expression ofMk in the following lemma.

Lemma 3.2. For all k = 0, 1, . . . , T ,

Mk = λAk,T−1 − 2ω
T−1∑
l=k

Bl(β)Ak,lA2
l+1,T−1. (16)

Proof. See Appendix A. □

Next, we derive the expressions of ηk(i) and Dk(i).
For all k = 0, 1, . . . , T , let

ηk = (ηk(1), ηk(2), . . . , ηk(J))′, Dk = (Dk(1),Dk(2), . . . ,Dk(J))′,
fk =diag(fk(1), fk(2), . . . , fk(J)), hk =diag(hk(1), hk(2), . . . , hk(J)),

where diag(a1, a2, . . . , aJ ) is a J × J diagonal matrix with elements
a1, a2, . . . , aJ . Then the recursive formulas (14) and (15) with their
terminal conditions can be rewritten as

ηk = fkQ (k)ηk+1, ηT = I, (17)

Dk =
M2

k+1

4ωA2
k+1,T−1

hkQ (k)ηk+1 + Q (k)Dk+1

+
(
Mk+1Bk(β) − ωA2

k+1,T−1B
2
k(β)

)
ηk, DT = 0, (18)

where I = (1, 1, . . . , 1)′ is a J × 1 vector and 0 is the J × 1 zero
vector.

Lemma 3.3. For all k = 0, 1, . . . , T ,

ηk =

(
T−1∏
m=k

fmQ (m)

)
I, (19)

Dk =

T−1∑
m=k

M2
m+1

4ωA2
m+1,T−1

(
m−1∏
l=k

Q (l)

)
hmQ (m)ηm+1

+

T−1∑
m=k

(
Mm+1Bm(β) − ωA2

m+1,T−1B
2
m(β)

)(m−1∏
l=k

Q (l)

)
ηm.(20)

Proof. See Appendix B. □
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After getting the expressions of ηk and Dk, their ith elements
give the expressions of ηk(i) and Dk(i).

Lemma 3.4. For all k = 0, 1, . . . , T − 1 and all i ∈ Π ,

0 < ηk(i) < 1. (21)

Proof. See Appendix C. □

Based on the above preliminary results, we can now solve the
auxiliary problem A(λ, ω).

Theorem 3.5. For k = 0, 1, . . . , T − 1, the optimal value function of
auxiliary problem A(λ, ω) is

vk(xk, i) = −ωA2
k,T−1ηk(i)x

2
k + Mkηk(i)xk + Dk(i), (22)

and the corresponding optimal strategy is

π̂A
k (i) =

(
Mk+1

2ωA2
k+1,T−1

− Ak,kxk − Bk(β)

)
pk+yΥ

−1
k (i)sk(i)

=

(
−

T−1∑
l=k

Bl(β)
Ak+1,l

+
λ

2ωAk+1,T−1
− Ak,kxk

)
pk+yΥ

−1
k (i)sk(i), (23)

where Mk, ηk(i) and Dk(i) are given in Lemmas 3.2 and 3.3.

Proof. See Appendix D. □

3.2. Solution and efficient frontier of original problem P(ω)

Before moving on to solve the problem P(ω) for its solution
and efficient frontier, we define some notations first. For k, t =

0, 1, . . . , T − 1, define

χk(β) = Bk(β)Ak+1,T−1, (24)

ζ (β) = A0,T−1

T−1∑
l=0

χl(β), (25)

at (it ) =

T−1∑
l=t

φl(it ), (26)

θk(it ) = E

(
T−1∏
l=k

fl(ξl)|ξt = it , t ≤ k

)
, (27)

φk(it ) = E

(
hk(ξk)

T−1∏
l=k+1

fl(ξl)|ξt = it , t ≤ k

)
, (28)

bk(β, i0) =

k∑
l=0

θl(i0)χl(β) −

k∑
l=0

φl(i0)
T−1∑

m=l+1

χm(β), (29)

ψ(β, i0) =

T−1∑
l=0

χ2
l (β)θl(i0) +

T−1∑
l=0

(
T−1∑

m=l+1

χm(β)

)2

φl(i0)

+ 2
T−1∑
l=0

χl(β)bl−1(β, i0). (30)

The following lemma gives the expressions of θk(it ) and φk(it ).

Lemma 3.6. For t, k = 0, 1, . . . , T − 1, t ≤ k and ξt = it ∈ Π , we
have

θk(it ) =

((
k−1∏
l=t

Q (l)

)
ηk

)
(it ), (31)

φk(it ) =

((
k−1∏
l=t

Q (l)

)
hkQ (k)ηk+1

)
(it ). (32)

Proof. See Appendix E. □

Remark 3.7. From Lemma 3.6, we have θ0(i0) = η0(i0). In view of
Lemma 2.1 in Chen et al. (2016), we know a0(i0) = 1 − θ0(i0). It is
an immediate consequence of Lemma 3.4 that 0 < a0(i0) < 1.

By using the similar method as that in Lemma 2.1 of Chen et al.
(2016), we can easily obtain the following lemma.

Lemma 3.8. For k = 0, 1, . . . , T − 1 and ξ0 = i0 ∈ Π , we have
φk(i0) = θk+1(i0) − θk(i0).

The following lemma holds as a result of Lemma 3.8.

Lemma 3.9. For k = 0, 1, . . . , T − 1 and ξ0 = i0 ∈ Π , we have

bk(β, i0) = θ0(i0)
T−1∑
m=0

χm(β) − θk+1(i0)
T−1∑

m=k+1

χm(β).

In particular, bT−1(β, i0) = θ0(i0)
∑T−1

m=0χm(β).

Proof. See Appendix F. □

In order to obtain the optimal solution and the efficient fron-
tier of problem P(ω), we need to calculate E0,x0,i0

(
X π̂

A

T

)
and

E0,x0,i0

((
X π̂

A

T

)2)
.

Theorem 3.10. For given initial state ξ0 = i0 and initial wealth
X0 = x0, we have

E0,x0,i0

(
X π̂

A

T

)
= A0,T−1θ0(i0)x0 + bT−1(β, i0) +

λ

2ω
a0(i0), (33)

E0,x0,i0

((
X π̂

A

T

)2)
= A2

0,T−1θ0(i0)x
2
0 + 2ζ (β)θ0(i0)x0

+
λ2

4ω2 a0(i0) + ψ(β, i0). (34)

Proof. See Appendix G. □

Now, following Theorems 3.5 and 3.10, the solution and effi-
cient frontier of problem P(ω) can be derived.

Theorem3.11. Suppose the initial state ξ0 = i0 and the initial wealth
X0 = x0. For k = 0, 1, . . . , T − 1, let Xπk = xk and ξk = i ∈ Π . The
optimal strategy of problem P(ω) is given by

π̂P
k (i) =

(
k−1∑
l=0

Bl(β)Al+1,k +
1

2ωη0(i0)Ak+1,T−1
+ A0,kx0 − Ak,kxk

)
× pk+yΥ

−1
k (i)sk(i)

=

⎛⎝ k−1∑
l=0

(
Clrl − βql+y

∑l
m=0 Cm

)∏k
m=l+1 rm∏k−1

m=l pm+y
+

∏T−1
l=k pl+y

2ωη0(i0)
∏T−1

l=k+1 rl

+

∏k
l=0 rl∏k−1

l=0 pl+y
x0 − rkxk

)
Υ −1

k (i)sk(i), (35)

and the efficient frontier is

Var0,x0,i0
(
X π̂

P

T

)
=
η0(i0)
a0(i0)

[
E0,x0,i0

(
X π̂

P

T

)
− A0,T−1x0 −

T−1∑
l=0

χl(β)

]2

− η0(i0)

(
T−1∑
l=0

χl(β)

)2

+ ψ(β, i0). (36)

Proof. See Appendix H. □
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Remark 3.12. Eq. (35) indicates that: (i) at any time, the pension
manager will invest less wealth in the risky assets as her risk aver-
sion level becomes larger; (ii) at any time k, the portfolio π̂P

k (i) is
proportional to the vector Υ −1

k (i)sk(i), which implies that the well-
known two funds separation theorem holds; (iii) the investment
π̂P
k (i) at any time k depends not only on the current wealth xk

and state i, but also on the initial wealth x0 and state i0; (iv) the
current portfolio π̂P

k (i) is affected by all the survival rates pl+y and
interest rates rl, l = 0, 1, . . . , T − 1 and by the contributions Cm,
m = 0, 1, . . . , k − 1 before the current time; (v) the return of
premiums clause has a significant effect on the pre-commitment
strategy and the effect is increasing with time (this is because the
mortality rate and the contribution accumulation are increasing
with time, and hence so are the amount of the premiums returned
to the dead members).

4. Equilibrium strategy and efficient frontier

In this section, we will solve problem (5) to obtain an equilib-
rium strategy.

Definition 4.1 (Equilibrium Strategy). Let π̂E be a given time-0
admissible strategy. For an arbitrary point (k, xk, i) and an arbitrary
decision πk(i) adapted to ℘k, define the time-k admissible strategy

π̃ (k) =
(
πk(i), π̂E

k+1(ξk+1), . . . , π̂E
T−1(ξT−1)

)
.

Then π̂E is said to be a subgame perfect Nash equilibrium strategy
(equilibrium strategy for short) if for every k, it satisfies

max
πk(i)

Jk (xk, i, π̃ (k)) = Jk
(
xk, i, π̂E(k)

)
,

where π̂E(k) =
(
π̂E
k (i), π̂

E
k+1(ξk+1), . . . , π̂E

T−1(ξT−1)
)
. Furthermore,

if an equilibrium strategy π̂E exists, the equilibrium value function
is defined as

Vk (xk, i) = Jk
(
xk, i, π̂E(k)

)
.

FromDefinition 4.1, finding an equilibrium strategy, at any time
k, for any given Xπk = xk and state ξk = i, amounts to solving the
following problem:

Vk (xk, i) = Jk
(
xk, i, π̂E(k)

)
= max

πk(i)
Jk
(
xk, i,

(
πk(i), π̂E

k+1 (ξk+1) , . . . , π̂
E
T−1 (ξT−1)

))
.

(37)

4.1. Equilibrium strategy

In order to get an equilibrium strategy and an equilibrium
value function, we apply a backward induction method to the
equilibrium value function Vk(xk, i).

Fix an arbitrarily chosen initial point (k, xk, i) and denote

gk(xk, i) = Ek,xk,i

[
X π̂

E

T

]
. (38)

Then, from Björk and Murgoci (2010, 2014), the equilibrium value
function satisfies the extended Bellman equation

Vk(xk, i) = max
πk(i)

{
Ek,xk,i

(
Vk+1

(
Xπk+1, ξk+1

))
−ωEk,xk,i

(
g2
k+1

(
Xπk+1, ξk+1

))
+ω

[
Ek,xk,i

(
gk+1

(
Xπk+1, ξk+1

))]2}
, VT (x, i) = x, (39)

where

gk(xk, i) = Ek,xk,i
[
gk+1

(
Xπk+1, ξk+1

)]
, gT (x, i) = x. (40)

To derive an expression of the equilibrium value function, for
k = 0, 1, . . . , T − 1 and i ∈ Π , we define a notation

zk(i) = s′k(i)cov
−1
k (i)sk(i), (41)

and construct two backward time series

ϖk(i) = zk(i) +

J∑
j=1

qij(k)ϖk+1(j), (42)

Wk(i) =

J∑
j=1

qij(k)Wk+1(j) +

J∑
j=1

qij(k)ϖ 2
k+1(j)

−

⎛⎝ J∑
j=1

qij(k)ϖk+1(j)

⎞⎠2

, (43)

with terminal condition

ϖT (i) = 0, WT (i) = 0.

We first derive the expressions of ϖk(i) and Wk(i). For k =

0, 1, . . . , T − 1, let
ϖk = (ϖk(1),ϖk(2), . . . ,ϖk(J))′, Wk = (Wk(1),Wk(2), . . . ,Wk(J))′,

zk = (zk(1), zk(2), . . . , zk(J))′,
ϖ2

k =
(
(ϖk(1))2, (ϖk(2))2, . . . , (ϖk(J))2

)′
,

(Q (k)ϖk+1)
2

=
(
((Q (k)ϖk+1)(1))2 , ((Q (k)ϖk+1)(2))2 , . . . , ((Q (k)ϖk+1)(J))2

)′
.

Then the recursive formulas (42) and (43) with their terminal
condition can be rewritten as

ϖk = zk + Q (k)ϖk+1, ϖT = 0, (44)

Wk = Q (k)Wk+1 + Q (k)ϖ2
k+1 − (Q (k)ϖk+1)

2, WT = 0. (45)

Lemma 4.2. For all k = 0, 1, . . . , T ,

ϖk =

T−1∑
m=k

⎛⎝m−1∏
j=k

Q (j)

⎞⎠ zm, (46)

Wk =

T−1∑
m=k+1

⎛⎝m−1∏
j=k

Q (j)

⎞⎠ϖ2
m

−

T−1∑
m=k+1

⎛⎝m−2∏
j=k

Q (j)

⎞⎠ (Q (m − 1)ϖm)
2. (47)

Proof. See Appendix I. □

After getting the expressions of ϖk and Wk, their ith compo-
nents give the expressions ofϖk(i) and Wk(i).

Remark 4.3. For all k = 0, 1, . . . , T −1 and all i ∈ Π , since covk(i)
is positive definite and sk(i) ̸= 0⃗n by Assumptions 2.2 and 2.3, we
have zk(i) > 0, and henceϖk(i) > 0 by Lemma 4.2.

Now we can give the equilibrium strategy and the equilibrium
value function.

Theorem 4.4. For k = 0, 1, . . . , T − 1, Xπk = xk and ξk = i ∈ Π ,
the optimal equilibrium strategy is given by

π̂E
k (i) =

pk+y

2ωAk+1,T−1
cov−1

k (i)sk(i) =

∏T−1
l=k pl+y

2ω
∏T−1

l=k+1 rl
cov−1

k (i)sk(i),(48)
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the equilibrium value function is given by

Vk(xk, i) = Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
4ω

(ϖk(i) − Wk(i)) , (49)

and

gk(xk, i) = Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
2ω
ϖk(i). (50)

Proof. See Appendix J. □

Remark 4.5. From Theorem 4.4 we find that: (i) in contrast to
the pre-commitment strategy, the equilibrium strategy is inde-
pendent of the wealth, the contribution and even the return of
premiums clause at any time. This result is unrealistic from an
economic point of view as pointed out in Björk et al. (2014). That
is, in order to achieve time-consistency, some important factors
are ignored in the equilibrium strategy. From this perspective, the
pre-commitment strategy is more practical than the equilibrium
strategy; (ii) the portfolio π̂E

k (i) at any time depends on the current
state, the future interest rates and the future survival rates, but is
independent of the initial state, the past interest rates and the past
survival rates. This is quite different from the pre-commitment
strategy. The reason is that, the equilibrium investor aims to find
the time-consistent strategy at any time k based on the forthcom-
ing information while the pre-commitment investor aims to find
the globally optimal strategy from the viewpoint of initial time; (iii)
Vk|β=1 < Vk|β=0 for all k = 0, 1, . . . , T − 1, that is, the equilibrium
value function with the return of premiums clause is less than
the one without the return of premiums clause. The reason is that
when the return of premiums clause is considered, a part of the
wealthwill be returned to thememberswho die before retirement,
and thus the wealth is less than the case without the return of
premiums clause.

4.2. Equilibrium efficient frontier

We consider the efficient frontier starting from arbitrary initial
point (k, xk, i) with time k ∈ {0, 1, . . . , T − 1}, wealth Xπk = xk and
state ξk = i ∈ Π . By Eqs. (38), (49) and (50), we have

Ek,xk,i

(
X π̂

E

T

)
= gk(xk, i) = Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
2ω
ϖk(i), (51)

and

Vk(xk, i) = Jk
(
xk, i, π̂E(k)

)
= Ek,xk,i

(
X π̂

E

T

)
− ωVark,xk,i

(
X π̂

E

T

)
= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
2ω
ϖk(i) − ωVark,xk,i

(
X π̂

E

T

)
= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
4ω

(ϖk(i) − Wk(i)) . (52)

Hence,

Vark,xk,i
(
X π̂

E

T

)
=

1
4ω2 (ϖk(i) + Wk(i)) . (53)

Sinceϖk(i) > 0 from Remark 4.3, Eq. (51) yields

1
2ω

=

Ek,xk,i

(
X π̂

E

T

)
− Ak,T−1xk −

∑T−1
l=k χl(β)

ϖk(i)
. (54)

Substituting Eq. (54) into Eq. (53), we obtain the efficient frontier

Vark,xk,i
(
X π̂

E

T

)
=

(
Ek,xk,i

(
X π̂

E

T

)
− Ak,T−1xk −

∑T−1
l=k χl(β)

)2
(ϖk(i))2

(ϖk(i) + Wk(i)) .

(55)

In the equilibrium efficient frontier, the global minimum vari-
ance equals zero.Moreover, the equilibriumefficient frontierwith-
out the return of premiums clause lies above the one with the
clause, that is to say, to obtain the same expected terminal wealth,
the pension manager with the return of premiums clause needs
to bear more risk than the case without the clause. It can be
interpreted this way: when there is a return of premiums clause,
the manager needs to return part of the accumulated wealth to
the members who die during the accumulation period, which
increases her risk.

5. Special cases

Special case 1: There is no regime switching. In this case, there
is only one state and Q (k) = 1 for k = 0, 1, . . . , T − 1. Then,

θk = ηk =

T−1∏
l=k

(1 − s′lΥ
−1
l sl), (56)

a0 = 1 −

T−1∏
l=0

(1 − s′lΥ
−1
l sl), (57)

φk = s′kΥ
−1
k sk

T−1∏
l=k+1

(1 − s′lΥ
−1
l sl), (58)

bk(β) = θ0

T−1∑
l=0

χl(β) − θk+1

T−1∑
l=k+1

χl(β), (59)

ψ(β) =

T−1∑
l=0

χ2
l (β)θl +

T−1∑
l=0

(
T−1∑

m=l+1

χm(β)

)2

φl

+ 2
T−1∑
l=0

χl(β)bl−1(β), (60)

ϖk =

T−1∑
l=k

(
s′lcov

−1
l sl

)
, (61)

Wk = 0. (62)

Hence, the pre-commitment strategy and the corresponding effi-
cient frontier can be simplified as

π̂P
k =

(
k−1∑
l=0

Bl(β)Al+1,k +
1

2ω
∏T−1

l=0 (1 − s′lΥ
−1
l sl)Ak+1,T−1

+ A0,kx0 − Ak,kxk
)
pk+yΥ

−1
k sk,

(63)

Var0,x0
(
X π̂

P

T

)
=
η0

a0

[
E0,x0

(
X π̂

P

T

)
− A0,T−1x0 −

T−1∑
l=0

χl(β)

]2

− η0

(
T−1∑
l=0

χl(β)

)2

+ ψ(β).

(64)

The equilibrium strategy and the corresponding efficient frontier
become as

π̂E
k =

∏T−1
l=k pl+y

2ω
∏T−1

l=k+1 rl
cov−1

k sk, (65)
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Vark,xk
(
X π̂

E

T

)
=

(
Ek,xk

(
X π̂

E

T

)
− Ak,T−1xk −

∑T−1
l=k χl(β)

)2
∑T−1

l=k

(
s′lcov

−1
l sl

) . (66)

Special case 2: There is no return of premiums clause, that is
to say, the pension plan members will be empty-handed if they
die during the accumulation phase. In this case, β = 0. Then, for
k = 0, 1, . . . , T − 1,

Bk(β) = Bk = CkAk,k, (67)

χk(β) = χk = CkAk,T−1, (68)

ζ (β) = ζ = A0,T−1

T−1∑
l=0

ClAl,T−1, (69)

bk(β, i0) = bk(i0) = θ0(i0)
T−1∑
l=0

ClAl,T−1 − θk+1(i0)
T−1∑

l=k+1

ClAl,T−1,(70)

ψ(β, i0) = ψ(i0) =

T−1∑
l=0

C2
l A

2
l,T−1θl(i0)

+

T−1∑
l=0

(
T−1∑

m=l+1

CmAm,T−1

)2

φl(i0) + 2
T−1∑
l=0

ClAl,T−1bl−1(i0). (71)

Hence, the pre-commitment strategy and the corresponding effi-
cient frontier can be simplified as

π̂P
k =

(
k−1∑
l=0

Cl
∏k

m=l rm∏k−1
m=l pm+y

+

∏T−1
l=k pl+y

2ωη0(i0)
∏T−1

l=k+1 rl

+

∏k
l=0 rl∏k−1

l=0 pl+y
x0 − rkxk

)
Υ −1

k (i)sk(i),

(72)

Var0,x0,i0
(
X π̂

P

T

)
=
η0(i0)
a0(i0)

[
E0,x0,i0

(
X π̂

P

T

)
− A0,T−1x0 −

T−1∑
l=0

ClAl,T−1

]2

− η0(i0)

(
T−1∑
l=0

ClAl,T−1

)2

+ ψ(i0). (73)

The equilibrium strategy in this case is also Eq. (48), and the
corresponding efficient frontier changes to be

Vark,xk,i
(
X π̂

E

T

)
=

(
Ek,xk,i

(
X π̂

E

T

)
− Ak,T−1xk −

∑T−1
l=k ClAl,T−1

)2
(ϖk(i))2

(ϖk(i) + Wk(i)) .

(74)

6. Numerical example

In this section, a numerical example is presented to illustrate
our results. The data used here is from the American market.

Consider a DC pension plan in which the accumulation process
of a member starts from age 50 and ends at age 60, i.e., y = 50
and T = 10. Assume that the initial amount of her fund account is
x0 = 1 and she contributes Ck = 1 (k = 0, 1, . . . , 9) as a premium
at the beginning of every year. The pension fund is managed by a
manager with risk aversion level ω = 2.

Suppose that the pension fund can be invested in a risk-free
asset and three risky assets in the American market. These three
risky assets (stocks) are COCA COLA CO (11 308), GENERAL ELEC-
TRIC CO (12 060), INTERNATIONAL BUSINESSMACHS COR (12 490)
(labeled by stocks 1, 2, 3). Our data set is composed of the historical
annual returns of the three stocks from1931 to 2016,with a sample
size 86. Next, we choose average interest rates on American 5-year

Table 1
Life table of USA in 2015. a

k 0 1 2 3 4 5
qk+y 0.00408 0.00448 0.00490 0.00534 0.00582 0.00621
k 6 7 8 9 10
qk+y 0.00676 0.00737 0.00788 0.00837 0.00893

a Date from: http://www.mortality.org/.

treasury bonds as the risk-free interest. Following Chen and Yang
(2011) and Yao et al. (2016a, b), we roughly divide the market
states into two regimes: the bearish (i = 1) and the bullish
(i = 2). The states of the Markov chain are classified according
to the average annual return of the three stocks. If the average
annual return is less than the empiricalmedian (based on the above
historical data) of the average return, the state of theMarkov chain
is said to be in State 1, otherwise, it is said to be in State 2. Based
on the data set above, for k = 0, 1, . . . , 9 and i = 1, 2, we obtain
the related parameters as follows

rk = 1.0264, sk(1) = (−0.1136, −0.0712, −0.0824)′,

sk(2) = (0.1005, 0.0849, 0.1333)′,

covk(1) =

[ 0.0612 −0.0101 0.0043
−0.0101 0.0802 −0.0128
0.0043 −0.0128 0.0792

]

covk(2) =

[ 0.0640 −0.0017 −0.0083
−0.0017 0.0474 0.0060
−0.0083 0.0060 0.0712

]
.

Using the above historical data, we now derive the state transi-
tion probability matrix Q of the Markov chain. According to the
classification of the market states, there are 43 years in State 1.
Among all these 43 years being in State 1, we find that the number
of the next year in State 1 is 17, and the number of the next year in
State 2 is 26. Therefore, we calculate the empirical state transition
probabilities q11(k) and q12(k) as follows

q11(k) = 17/43 ≈ 0.3953, q12(k) = 26/43 ≈ 0.6047.

Similarly, we can calculate other empirical state transition
probabilities q21(k) = 25/43 ≈ 0.5814 and q22(k) = 18/43 ≈

0.4186. Hence the state transition probability matrix is

Qk =

[
q11(k) q12(k)
q21(k) q22(k)

]
=

[
0.3953 0.6047
0.5814 0.4186

]
.

When the regime switching is not considered, we assume that
the market has only one state. We use all the data listed above to
estimate the parameters, and obtain

sk = (−0.0066, 0.0069, 0.0255)′,

covk =

[0.0885 0.0230 0.0296
0.0230 0.0711 0.0228
0.0296 0.0228 0.0931

]
.

In addition, qk+y, k = 0, 1, . . . , 10 are from the life table of USA
in 2015 as shown in Table 1.

6.1. Numerical analysis for the two investment strategies

This subsection analyzes the influence of regime switching and
the return of premiums clause on the two investment strategies.
For convenience, suppose that the market states evolve following
Table 2.

Fig. 1 plots the two investment strategies. We find that no
matter for the pre-commitment or the equilibrium strategy, the
amounts invested in the risky assets in bull markets are more

http://www.mortality.org/
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Table 2
Market states from time 0 to T − 1.

k 0 1 2 3 4 5 6 7 8 9
Market state 2 1 1 2 2 1 2 1 2 1

(a).

(b).

Fig. 1. The process of pre-commitment strategy and equilibrium strategy.

than those in bear markets, which is consistent with the common
sense. For pre-commitment strategy, the amount invested in each
risky asset in bull (bear) markets shows a decreasing (increasing)
trend, and the amounts invested in different risky assets will
become closer and closer. However, for the equilibrium strategy,
the amount invested in each risky asset is relatively stable in
every year. This indicates that the pre-commitment strategy is
particularly sensitive to themarket state at the initial moment, but
the sensitiveness decreases gradually along with time. The sensi-
tiveness of the equilibrium strategy to the market state is mostly
the same in every year. The reason is that the pre-commitment
strategy is made at the initial time, but the equilibrium strategy
can be updated at the beginning of every year. Thus the stability of
the equilibrium strategy is better than that of the pre-commitment
strategy. But from Fig. 2, we find that the wealth accumulation
under the equilibrium strategy is less than that under the pre-
commitment strategy, that is, the equilibrium strategy is less ef-
ficient than the pre-commitment strategy.

Fig. 2. The wealth process of two strategies.

Fig. 3. The effect of the return of premiums clause on the pre-commitment strategy.

The effect of the return of premiums clause on the pre-commit
ment strategy is shown in Fig. 3.We find that in bull (bear)markets,
the amount invested in the risky assets (here and hereafter, we
define the sum of the amount invested in the three risky assets
as the amount invested in the risky assets) when the return of
premiums clause is considered is less (more) than that when the
return of premiums clause is not considered. However, in bear
markets, the amount invested in the risky assets is less than zero,
which means that the pension manager short sells the risky assets
to buy the risk-free asset. Generally, the return of premiums clause
decreases the transaction amount of the risky assets no matter
in bull markets or in bear markets. One possible explanation is
that the manager with the clause will face more uncertainty of the
wealth in the future due to the return of premiums to themembers
who die before retirement, which in turn forces her to invest less
in the risky assets to avoid higher risk. Moreover, we find that the
effect of the return of premiums clause on the pre-commitment
strategy grows larger with time. This is because both the mortality
rate and the contribution accumulation increase with time, and
hence the amount of the premiums returned to the dead members
increases with time.

Fig. 4 shows the effect of regime switching on the two invest-
ment strategies. We find that in the case with regime switching,
no matter for the pre-commitment or the equilibrium strategy,
the amount invested in risky assets is positive in bull markets,
whichmeans the pensionmanager buys the risky assets; while it is
negative in bear markets, whichmeans the pensionmanager short
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(a).

(b).

Fig. 4. The effect of regime switching on the two strategies.

sells the risky assets to buy the risk-free asset. In both states, the
transaction amount of the risky assets is greater than that in the
case with no regime switching. This is because regime switching
can describe the realmarket better, and hence themanager obtains
more information from the market, which can be served as her in-
vestment guidance. Moreover, the amount invested in risky assets
is relatively stable in the case with no regime switching, while it
fluctuates along with the market states in the case with regime
switching. This is because, when regime switching is considered,
the change of market states promotes the pension manager to
adjust her investment strategies, which is more in line with the
reality and makes our strategy more practical.

6.2. Numerical analysis for the two efficient frontiers

In this subsection, we consider the effect of regime switching
and the return of premiums clause on the two efficient frontiers.

In order to study the effect of the market states on the efficient
frontier, we plot in Fig. 5 these efficient frontiers with different ini-
tialmarket states for the pre-commitment or the equilibrium strat-
egy, respectively. We find that no matter for the pre-commitment
or the equilibrium strategy, the corresponding efficient frontier of
state 2 lies above that of state 1. That is, for the same expected

Fig. 5. Efficient frontiers with different initial market states.

terminal wealth, the investor would bear less risk when she en-
ters the market at bullish time. On the other hand, the efficient
frontier with pre-commitment strategy lies above the efficient
frontier with equilibrium strategy. That is, to obtain the same
expected terminal wealth the investor with equilibrium strategy
needs to face more risks than the investor with pre-commitment
strategy. The reason is that the pre-commitment investor focuses
on the globally optimal strategy, but the equilibrium investor takes
the non-cooperative game to obtain the time-consistent strategy,
which leads to the increase of the risk.

Under the assumption that the initial market state is bullish,
Fig. 6 plots the effect of the return of premiums clause on the two
efficient frontiers. We find that nomatter for the pre-commitment
or the equilibrium strategy, the efficient frontier with the return
of premiums clause is below that without the return of premiums
clause. That is, to get the same expected terminal wealth, greater
risk will be faced if the return of premium clause is taken into
consideration. The reason is that the manager of the DC pension
fund with the clause needs to allocate part of the accumulated
wealth to the members who die during the accumulation phase,
which decreases the wealth level and increases the uncertainty
of the wealth, that is, the manager with the clause needs to bear
greater risk.

Fig. 7 plots the effect of regime switching on the two efficient
frontiers. We find that no matter for the pre-commitment or the
equilibrium strategy, the efficient frontier without regime switch-
ing is below that with regime switching. That is, to get the same
expected terminal wealth, less risk will be faced if regime switch-
ing is taken into consideration. This shows that the investment risk
can be better avoided when regime switching is considered.

7. Conclusion

This paper studies the pre-commitment and equilibrium strate-
gies for a DC pension plan under a multi-period mean–variance
framework. In the plan, the pension manager is assumed to invest
one risk-free asset and n risky assets in a financial market. In
order to protect the interests of pension members who die before
retirement, we introduce the return of premiums clause to the
model. Moreover, we use the Markov regime switching model to
show the effect of market states on the return of the risky assets.

On the one hand, using the embedding technique and the
dynamic programming method, we obtain the pre-commitment
strategy and the corresponding efficient frontier in closed form.
We find that the pre-commitment strategy depends not only on
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(a).

(b).

Fig. 6. The effect of the return of premiums clause on the two efficient frontiers.

the current state and wealth but also on the initial state and
wealth. Moreover, the pre-commitment strategy depends on the
contribution, the survival rate, the interest rate and the return of
premiums clause.

On the other hand, using the game theory and the extended
Bellman equation, we derive the analytical expressions of the
equilibrium strategy and the corresponding efficient frontier. We
find that the equilibrium strategy is only dependent of the current
state, the future interest rate and survival rate, but independent
of other factors. This is quite different from the pre-commitment
strategy.

Finally, we do some numerical analyses for the two strategies
and efficient frontiers and find some interesting results:

(i) The return of premiums clause decreases the amount in-
vested in the risky assets in the pre-commitment strategy, but has
no effect on the equilibrium strategy.

(ii) In both strategies, regime switching increases the trans-
action amount of the risky assets, and the strategies are more
practical when regime switching is considered.

(iii) In both strategies, to obtain the same expected terminal
wealth, the manager faces greater risk when the return of premi-
ums clause is considered, but faces less riskwhen regime switching
is considered.

(a).

(b).

Fig. 7. The effect of regime switching on the two efficient frontiers.

(iv) To obtain the same expected terminal wealth, the equilib-
rium investor needs to face more risks than the pre-commitment
investor.

Our work can be extended to several directions. For example,
we can further consider the stochastic salary flow and inflation
risk. We can also add the consumption problem into our model to
consider the life cycle problem. Another interesting topic is to con-
sider our model under incomplete information. In our model we
assume that the states of the financial market are fully observable.
In practice, the states of the financial market cannot be completely
observed, see Zhang et al. (2016).
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Appendix A. The proof of Lemma 3.2

Proof. We prove the expression ofMk by mathematical induction.
For k = T , we have

MT = λAT ,T−1 − 2ω
T−1∑
l=T

Bl(β)Ak,lA2
l+1,T−1 = λ.

That is, Eq. (16) holds for k = T .
Suppose that Eq. (16) holds for T , T − 1, . . . , k + 1. Then we

have
Mk =

(
Mk+1 − 2ωA2

k+1,T−1Bk(β)
)
Ak,k

=

(
λAk+1,T−1 − 2ω

T−1∑
l=k+1

Bl(β)Ak+1,lA2
l+1,T−1 − 2ωA2

k+1,T−1Bk(β)

)
Ak,k

= λAk,T−1 − 2ω
T−1∑

l=k+1

Bl(β)Ak,lA2
l+1,T−1 − 2ωBk(β)Ak,kA2

k+1,T−1

= λAk,T−1 − 2ω
T−1∑
l=k

Bl(β)Ak,lA2
l+1,T−1, (75)

which means that Eq. (16) holds for k. By the principle of mathe-
matical induction, Eq. (16) holds for all k = 0, 1, . . . , T , and thus
the lemma is proved. □

Appendix B. The proof of Lemma 3.3

Proof. First, we prove the expression of ηk by mathematical
induction. For k = T , we have

ηT =

(
T−1∏
m=T

fmQ (m)

)
I = I,

implying that Eq. (19) holds for k = T .
Suppose that Eq. (19) holds for T , T−1, . . . , k+1. Thenwe have

ηk = fkQ (k)ηk+1 = fkQ (k)

(
T−1∏

m=k+1

fmQ (m)

)
I =

(
T−1∏
m=k

fmQ (m)

)
I, (76)

which means that Eq. (19) holds for k. Hence Eq. (19) holds for all
k = 0, 1, . . . , T .

Next, we prove the expression of Dk. For k = T , we have

DT =

T−1∑
m=T

M2
m+1

4ωA2
m+1,T−1

(
m−1∏
l=T

Q (l)

)
hmQ (m)ηm+1

+

T−1∑
m=T

(
Mm+1Bm(β) − ωA2

m+1,T−1B
2
m(β)

)(m−1∏
l=T

Q (l)

)
ηm = 0,

that is, Eq. (20) holds for k = T .
Suppose that Eq. (20) holds for T , T − 1, . . . , k + 1. Then we

have

Dk =
M2

k+1

4ωA2
k+1,T−1

hkQ (k)ηk+1 + Q (k)Dk+1

+
(
Mk+1Bk(β) − ωA2

k+1,T−1B
2
k(β)

)
ηk

=
M2

k+1

4ωA2
k+1,T−1

hkQ (k)ηk+1 +
(
Mk+1Bk(β) − ωA2

k+1,T−1B
2
k(β)

)
ηk

+Q (k)

(
T−1∑

m=k+1

M2
m+1

4ωA2
m+1,T−1

(
m−1∏
l=k+1

Q (l)

)
hmQ (m)ηm+1

+

T−1∑
m=k+1

(
Mm+1Bm(β) − ωA2

m+1,T−1B
2
m(β)

)( m−1∏
l=k+1

Q (l)

)
ηm

)

=

T−1∑
m=k

M2
m+1

4ωA2
m+1,T−1

(
m−1∏
l=k

Q (l)

)
hmQ (m)ηm+1

+

T−1∑
m=k

(
Mm+1Bm(β) − ωA2

m+1,T−1B
2
m(β)

)(m−1∏
l=k

Q (l)

)
ηm, (77)

which shows that Eq. (20) holds for k. By the principle of mathe-
matical induction, Eq. (20) holds for all k = 0, 1, . . . , T . The proof
is completed. □

Appendix C. The proof of Lemma 3.4

Proof. We prove this lemma by mathematical induction for k. For
k = T − 1 and i ∈ Π , Lemma 3.3 implies that

ηT−1(i) = (fT−1Q (T − 1)I) (i) = fT−1(i).

From Remark 3.1, 0 < fk(i) < 1 for k = 0, 1, . . . , T − 1 and i ∈ Π .
Hence, Eq. (21) holds for k = T − 1 and all i ∈ Π .

Suppose that Eq. (21) holds for T − 1, T − 2, . . . , k + 1 and all
i ∈ Π . Set η̄k+1 = maxj∈Π {ηk+1(j)} and η̃k+1 = minj∈Π {ηk+1(j)}.
Then,

0 < η̃k+1 ≤

J∑
j=1

qij(k)ηk+1(j) ≤ η̄k+1 < 1. (78)

Again from the fact 0 < fk(i) < 1 and Eqs. (14) and (78), we have
0 < ηk(i) < 1 for all i ∈ Π , i.e., Eq. (21) holds for k and all i ∈ Π .
This completes the proof. □

Appendix D. The proof of Theorem 3.5

Proof. For k = T − 1, by Eqs. (8) and (9), we have
vT−1(xT−1, i)

= max
πT−1(i)

⎧⎨⎩
J∑

j=1

qij(T − 1)E
[
vT

(
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

, j
)]⎫⎬⎭

= max
πT−1(i)

⎧⎨⎩
J∑

j=1

qij(T − 1)E

[
−ω

(
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

)2

+ λ

(
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

)]}
= −ω

(
AT−1,T−1xT−1 + BT−1(β)

)2
+ λ

(
AT−1,T−1xT−1 + BT−1(β)

)
+ max

πT−1(i)

{[
λ− 2ω

(
AT−1,T−1xT−1 + BT−1(β)

)] s′T−1(i)πT−1(i)
pT−1+y

−ω
π ′

T−1(i)ΥT−1(i)πT−1(i)

p2T−1+y

}
. (79)

SinceΥT−1(i) (i ∈ Π ) is positive definite andω > 0, the application
of the first order condition to πT−1(i) yields the optimal solution

π̂A
T−1(i) =

(
λ

2ω
− AT−1,T−1xT−1 − BT−1(β)

)
pT−1+yΥ

−1
T−1(i)sT−1(i). (80)

Substituting Eq. (80) into Eq. (79) and noticing that ηT−1(i) =

fT−1(i), we have

vT−1 (xT−1, i)

= −ω
(
AT−1,T−1xT−1 + BT−1(β)

)2fT−1(i)

+ λ
(
AT−1,T−1xT−1 + BT−1(β)

)
fT−1(i) +

λ2

4ω
hT−1(i)

= −ωA2
T−1,T−1fT−1(i)x2T−1 + (λ− 2ωBT−1(β)) AT−1,T−1fT−1(i)xT−1

+
λ2

4ω
hT−1(i) +

(
λBT−1(β) − ωB2

T−1(β)
)
fT−1(i)

= −ωA2
T−1,T−1ηT−1(i)x2T−1 + MT−1ηT−1(i)xT−1 + DT−1(i). (81)

Eqs. (80) and (81) show that Eqs. (22) and (23) hold for k = T − 1.
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Suppose that Eqs. (22) and (23) hold for T −1, T −2, . . . , k+1.
Substituting the expression of vk+1 in Eq. (22) into Eq. (8), we have
vk(xk, i)

= max
πk(i)

⎧⎨⎩
J∑

j=1

qij(k)E
[
vk+1

(
Ak,kxk + Bk(β) +

S ′

k(i)πk(i)
pk+y

, j
)]⎫⎬⎭

= max
πk(i)

⎧⎨⎩
J∑

j=1

qij(k)E

[
−ωA2

k+1,T−1ηk+1(j)
(
Ak,kxk + Bk(β) +

S ′

k(i)πk(i)
pk+y

)2

+Mk+1ηk+1(j)
(
Ak,kxk + Bk(β) +

S ′

k(i)πk(i)
pk+y

)
+ Dk+1(j)

]}
=

J∑
j=1

qij(k)
(
−ωA2

k+1,T−1ηk+1(j)
(
Ak,kxk + Bk(β)

)2
+Mk+1ηk+1(j)

(
Ak,kxk + Bk(β)

)
+ Dk+1(j)

)
+ max

πk(i)

⎧⎨⎩
J∑

j=1

qij(k)ηk+1(j)
[(

−2ωA2
k+1,T−1

(
Ak,kxk + Bk(β)

)
+Mk+1

) s′k(i)πk(i)
pk+y

− ωA2
k+1,T−1

π ′

k(i)Υk(i)πk(i)
p2k+y

]}
. (82)

Since A2
k+1,T−1 > 0, ω > 0, Υk(i) is positive definite, and 0 <∑J

j=1qij(k)ηk+1(j) < 1 (i ∈ Π ) by Lemma 3.4, the application of
the first order condition to πk(i) yields the optimal solution

π̂A
k (i) =

(
Mk+1

2ωA2
k+1,T−1

− Ak,kxk − Bk(β)

)
pk+yΥ

−1
k (i)sk(i)

=

(
−

T−1∑
l=k

Bl(β)
Ak+1,l

+
λ

2ωAk+1,T−1
− Ak,kxk

)
pk+yΥ

−1
k (i)sk(i). (83)

Substituting Eq. (83) into Eq. (82) gives

vk (xk, i)

= −ωA2
k+1,T−1

(
Ak,kxk + Bk(β)

)2fk(i) J∑
j=1

qij(k)ηk+1(j)

+
M2

k+1

4ωA2
k+1,T−1

hk(i)
J∑

j=1

qij(k)ηk+1(j)

+Mk+1
(
Ak,kxk + Bk(β)

)
fk(i)

J∑
j=1

qij(k)ηk+1(j) +

J∑
j=1

qij(k)Dk+1(j)

= −ωA2
k+1,T−1A

2
k,kηk(i)x

2
k +

(
Mk+1 − 2ωA2

k+1,T−1Bk(β)
)
Ak,kηk(i)xk

+
M2

k+1

4ωA2
k+1,T−1

hk(i)
J∑

j=1

qij(k)ηk+1(j)

+
(
Mk+1Bk(β) − ωA2

k+1,T−1B
2
k(β)

)
ηk(i) +

J∑
j=1

qij(k)Dk+1(j)

= −ωA2
k,T−1ηk(i)x

2
k + Mkηk(i)xk + Dk(i). (84)

Eqs. (83) and (84) show that Eqs. (22) and (23) hold for k. By the
principle of mathematical induction, Eqs. (22) and (23) hold for all
k = 0, 1, . . . , T − 1. □

Appendix E. The proof of Lemma 3.6

Proof. First, we prove the following equation by mathematical
induction: for k = 0, 1, . . . , T − 1,

E

(
T−1∏
l=k

fl(ξl)|ξk = ik

)
= ηk(ik). (85)

For k = T − 1,

E

(
T−1∏

l=T−1

fl(ξl)|ξT−1 = iT−1

)
= fT−1(iT−1)

= (fT−1Q (T − 1)I) (iT−1) = ηT−1(iT−1).

(86)

Hence, Eq. (85) holds for k = T − 1. Suppose that Eq. (85) holds for
T − 1, T − 2, . . . , k + 1. Then, we have

E

(
T−1∏
l=k

fl(ξl)|ξk = ik

)
= E

(
fk(ξk)

T−1∏
l=k+1

fl(ξl)|ξk = ik

)

= fk(ik)E

(
T−1∏

l=k+1

fl(ξl)|ξk = ik

)
= fk(ik)E

(
E

(
T−1∏

l=k+1

fl(ξl)|ξk+1

)
|ξk = ik

)

= fk(ik)E (ηk+1(ξk+1)|ξk = ik) = fk(ik)
J∑

j=1

qik j(k)ηk+1(j) = ηk(ik), (87)

which shows that Eq. (85) holds for k. By the principle of mathe-
matical induction, Eq. (85) holds for all k = 0, 1, . . . , T − 1.

Next, we prove Eq. (31) by mathematical induction. For t = k,
Eq. (85) gives

θk(ik) = E

(
T−1∏
l=k

fl(ξl)|ξk = ik

)
= ηk(ik) =

((
k−1∏
l=k

Q (l)

)
ηk

)
(ik),

which means that Eq. (31) holds for t = k. Suppose that Eq. (31)
holds for k, k − 1, . . . , t + 1. Then we have

θk(it ) = E

(
T−1∏
l=k

fl(ξl)|ξt = it

)
= E

(
E

(
T−1∏
l=k

fl(ξl)|ξt+1

)
|ξt = it

)

= E (θk(ξt+1)|ξt = it ) = E

(((
k−1∏

l=t+1

Q (l)

)
ηk

)
(ξt+1)|ξt = it

)

=

J∑
j=1

qit j(t)

((
k−1∏

l=t+1

Q (l)

)
ηk

)
(j) =

((
k−1∏
l=t

Q (l)

)
ηk

)
(it ), (88)

which shows that Eq. (31) holds for t . Hence, Eq. (31) holds for all
t = 0, 1, . . . , k.

Last, the proof of Eq. (32) is similar to that of Eq. (31) and is
omitted. □

Appendix F. The proof of Lemma 3.9

Proof. For k = 0, 1, . . . , T − 1, ξ0 = i0 ∈ Π , by Lemma 3.8, we
have

bk(β, i0) =

k∑
l=0

θl(i0)χl(β) −

k∑
l=0

φl(i0)
T−1∑

m=l+1

χm(β)

=

k∑
l=0

θl(i0)χl(β) −

k∑
l=0

θl+1(i0)
T−1∑

m=l+1

χm(β) +

k∑
l=0

θl(i0)
T−1∑

m=l+1

χm(β)

=

k∑
l=0

θl(i0)
T−1∑
m=l

χm(β) −

k∑
l=0

θl+1(i0)
T−1∑

m=l+1

χm(β)

= θ0(i0)
T−1∑
m=0

χm(β) − θk+1(i0)
T−1∑

m=k+1

χm(β). (89)

This completes the proof. □

Appendix G. The proof of Theorem 3.10

Proof. Substituting Eq. (23) into wealth process (1), we have

X π̂
A

k+1 = Ak,kX π̂
A

k + Bk(β)
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+

(
Mk+1

2ωA2
k+1,T−1

− Ak,kX π̂
A

k − Bk(β)

)
S ′

k(ξk)Υ
−1
k (ξk)sk(ξk)

=

(
Ak,kX π̂

A

k + Bk(β)
) (

1 − S ′

k(ξk)Υ
−1
k (ξk)sk(ξk)

)
+

(
Mk+1

2ωA2
k+1,T−1

)
S ′

k(ξk)Υ
−1
k (ξk)sk(ξk). (90)

Noticing that X π̂
A

k and S ′

k(ξk) are statistical independent, tak-
ing the conditional expectation on both sides of Eq. (90) under
ξ0, ξ1, . . . , ξk yields

E
(
X π̂

A

k+1|ξ0, ξ1, . . . , ξk

)
= Ak,kfk(ξk)E

(
X π̂

A

k |ξ0, ξ1, . . . , ξk

)
+ Bk(β)fk(ξk) +

Mk+1

2ωA2
k+1,T−1

hk(ξk).
(91)

Since E (.|ξ0, ξ1, . . . , ξk) = E (.|ξ0, ξ1, . . . , ξk−1), by applying
Eq. (91) recursively, we can obtain

E
(
X π̂

A

k |ξ0, ξ1, . . . , ξk−1, X0

)
= A0,k−1

k−1∏
l=0

fl(ξl)X0 +

k−1∑
l=0

Bl(β)Al+1,k−1

k−1∏
m=l

fm(ξm)

+

k−1∑
l=0

Ml+1

2ωA2
l+1,T−1

Al+1,k−1hl(ξl)
k−1∏

m=l+1

fm(ξm). (92)

Then, at time T , we have

E
(
X π̂

A

T |ξ0, ξ1, . . . , ξT−1, X0

)
= A0,T−1

T−1∏
l=0

fl(ξl)X0 +

T−1∑
l=0

Bl(β)Al+1,T−1

T−1∏
m=l

fm(ξm)

+

T−1∑
l=0

Ml+1

2ωAl+1,T−1
hl(ξl)

T−1∏
m=l+1

fm(ξm). (93)

Again, taking the conditional expectation on both sides of Eq. (93)
under the initial state ξ0 = i0 and the initial wealth X0 = x0, we
have

E0,x0,i0

(
X π̂

A

T

)
= A0,T−1E

(
T−1∏
l=0

fl(ξl)|ξ0 = i0

)
x0

+

T−1∑
l=0

Bl(β)Al+1,T−1E

(
T−1∏
m=l

fm(ξm)|ξ0 = i0

)

+

T−1∑
l=0

Ml+1

2ωAl+1,T−1
E

(
hl(ξl)

T−1∏
m=l+1

fm(ξm)|ξ0 = i0

)

= A0,T−1θ0(i0)x0 +

T−1∑
l=0

Bl(β)Al+1,T−1θl(i0) +

T−1∑
l=0

Ml+1

2ωAl+1,T−1
φl(i0)

= A0,T−1θ0(i0)x0 +

T−1∑
l=0

Bl(β)Al+1,T−1θl(i0)

−

T−1∑
l=0

φl(i0)
T−1∑

m=l+1

Bm(β)Am+1,T−1 +
λ

2ω

T−1∑
l=0

φl(i0)

= A0,T−1θ0(i0)x0 + bT−1(β, i0) +
λ

2ω
a0(i0). (94)

This shows Eq. (33). In order to derive E0,x0,i0

((
X π̂

A

T

)2)
, we first

note that

E
[
(S ′

k(ξk)Υ
−1
k (ξk)sk(ξk))2

]
= E

[
s′k(ξk)Υ

−1
k (ξk)Sk(ξk)S ′

k(ξk)Υ
−1
k (ξk)sk(ξk)

]
= s′k(ξk)Υ

−1
k (ξk)sk(ξk) = hk(ξk). (95)

Taking the square on both sides of Eq. (90) and then taking the
conditional expectation, we get

E
((

X π̂
A

k+1

)2
|ξ0, ξ1, . . . , ξk

)
= E

((
X π̂

A

k

)2
|ξ0, ξ1, . . . , ξk

)
A2
k,kfk(ξk)

+ 2E
(
X π̂

A

k |ξ0, ξ1, . . . , ξk

)
Ak,kBk(β)fk(ξk)

+
M2

k+1

4ω2A4
k+1,T−1

hk(ξk) + B2
k(β)fk(ξk). (96)

Using E (.|ξ0, ξ1, . . . , ξk) = E (.|ξ0, ξ1, . . . , ξk−1) again, by apply-
ing Eq. (96) recursively and substituting Eq. (92) and the expression
ofMk+1 into it, we can obtain

E
((

X π̂
A

T

)2
|ξ0, ξ1, . . . , ξT−1, X0

)
= A2

0,T−1

T−1∏
l=0

fl(ξl)X2
0 + 2A0,T−1

T−1∑
l=0

χl(β)
T−1∏
m=0

fm(ξm)X0

+

T−1∑
l=0

χ2
l (β)

T−1∏
m=l

fm(ξm)

+ 2
T−1∑
l=0

χl(β)

(
l−1∑
m=0

χm(β)
T−1∏
s=m

fs(ξs)

−

l−1∑
m=0

T−1∑
s=m+1

χs(β)hm(ξm)
T−1∏

s=m+1

fs(ξs)

)

+
λ

ω

T−1∑
l=0

(
χl(β)

l−1∑
m=0

hm(ξm)
T−1∏

s=m+1

fs(ξs)

−

T−1∑
m=l+1

χm(β)hl(ξl)
T−1∏

m=l+1

fm(ξm)

)

+

T−1∑
l=0

(
T−1∑

m=l+1

χm(β)

)2

hl(ξl)
T−1∏

m=l+1

fm(ξm)

+
λ2

4ω2

T−1∑
l=0

hl(ξl)
T−1∏

m=l+1

fm(ξm). (97)

Once more, taking the conditional expectation on both sides of
Eq. (97) under the initial state ξ0 = i0 and the initial wealth
X0 = x0, we obtain

E0,x0,i0

((
X π̂

A

T

)2)
= A2

0,T−1θ0(i0)x
2
0 + 2A0,T−1

T−1∑
l=0

χl(β)θ0(i0)x0

+

T−1∑
l=0

χ2
l (β)θl(i0) +

λ2

4ω2

T−1∑
l=0

φl(i0)
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+
λ

ω

T−1∑
l=0

(
χl(β)

l−1∑
m=0

φm(i0) − φl(i0)
T−1∑

m=l+1

χm(β)

)

+

T−1∑
l=0

(
T−1∑

m=l+1

χm(β)

)2

φl(i0)

+ 2
T−1∑
l=0

χl(β)

(
l−1∑
m=0

χm(β)θm(i0) −

l−1∑
m=0

φm(i0)
T−1∑

s=m+1

χs(β)

)

= A2
0,T−1θ0(i0)x

2
0 + 2ζ (β)θ0(i0)x0 +

λ2

4ω2 a0(i0) + ψ(β, i0), (98)

where the last equality uses the following conclusion:

T−1∑
l=0

(
χl(β)

l−1∑
m=0

φm(i0) − φl(i0)
T−1∑

m=l+1

χm(β)

)

=

T−1∑
l=0

(
χl(β)(θl(i0) − θ0(i0)) − (θl+1(i0) − θl(i0))

T−1∑
m=l+1

χm(β)

)

=

T−1∑
l=0

θl(i0)
T−1∑
m=l

χm(β) −

T−1∑
l=0

θl+1(i0)
T−1∑

m=l+1

χm(β) − θ0(i0)
T−1∑
l=0

χl(β)

= θ0(i0)
T−1∑
m=0

χm(β) − θ0(i0)
T−1∑
l=0

χl(β) = 0.

This proves Eq. (34). □

Appendix H. The proof of Theorem 3.11

Proof. As pointed out earlier, the optimal strategy of problem
P(ω) is the solution of A(λ, ω) with λ = 1 + 2ωE0,x0,i0

(
X π̂

A

T

)
. By

Theorem 3.10, we have

λ = 1 + 2ωE0,x0,i0

(
X π̂

A

T

)
= 1 + 2ω

(
A0,T−1θ0(i0)x0 + bT−1(β, i0)

)
+ λa0(i0).

Because 0 < 1 − a0(i0) = θ0(i0) = η0(i0) < 1, the above equation
gives

λ =
1 + 2ω

(
A0,T−1η0(i0)x0 + bT−1(β, i0)

)
η0(i0)

. (99)

Substituting Eq. (99) into Eq. (23), we obtain

π̂P
k (i) =

(
−

T−1∑
l=k

Bl(β)
Ak+1,l

+
1 + 2ωbT−1(β, i0)
2ωη0(i0)Ak+1,T−1

+ A0,kx0 − Ak,kxk

)
× pk+yΥ

−1
k (i)sk(i).

(100)

Substituting the expression of bT−1(β, i0) in Lemma 3.9 into
Eq. (100), we can get the desired result (35).

Next, substituting Eq. (99) into Eqs. (33) and (34), according to
a0(i0) + η0(i0) = 1 and θ0(i0) = η0(i0), we obtain

E0,x0,i0

(
X π̂

P

T

)
= A0,T−1θ0(i0)x0 + bT−1(β, i0) +

a0(i0)
2ωη0(i0)

+ A0,T−1a0(i0)x0 + bT−1(β, i0)
a0(i0)
η0(i0)

= A0,T−1x0 +
a0(i0)

2ωη0(i0)
+

bT−1(β, i0)
η0(i0)

, (101)

E0,x0,i0

((
X π̂

P

T

)2)
= A2

0,T−1x
2
0 + 2ζ (β)η0(i0)x0 +

2x0A0,T−1bT−1(β, i0)a0(i0)
η0(i0)

+
x0A0,T−1a0(i0)
ωη0(i0)

+
a0(i0)

4ω2η20(i0)
+

b2T−1(β, i0)a0(i0)

η20(i0)
+

bT−1(β, i0)a0(i0)
ωη20(i0)

+ψ(β, i0). (102)

From Lemma 3.9 and θ0(i0) = η0(i0), we have
ζ (β)η0(i0) − A0,T−1bT−1(β, i0)

= η0(i0)A0,T−1

T−1∑
l=0

χl(β) − A0,T−1θ0(i0)
T−1∑
m=0

χm(β) = 0.
(103)

Then from Eqs. (101)–(103), the variance of wealth at the terminal
time T is

Var0,x0,i0
(
X π̂

P

T

)
= E0,x0,i0

((
X π̂

P

T

)2)
−

[
E0,x0,i0

(
X π̂

P

T

)]2
= 2[ζ (β)η0(i0) − A0,T−1bT−1(β, i0)]x0 +

a0(i0)
4ω2η0(i0)

−
b2T−1(β, i0)
η0(i0)

+ ψ(β, i0)

=
a0(i0)

4ω2η0(i0)
−

b2T−1(β, i0)
η0(i0)

+ ψ(β, i0). (104)

Eq. (101) together with the fact that 0 < a0(i0) < 1 yields

1
2ω

=

(
E0,x0,i0

(
X π̂

P

T

)
− A0,T−1x0

)
η0(i0) − bT−1(β, i0)

a0(i0)
. (105)

Substituting Eq. (105) into Eq. (104), we have

Var0,x0,i0
(
X π̂

P

T

)
=
η0(i0)
a0(i0)

[
E0,x0,i0

(
X π̂

P

T

)
− A0,T−1x0 −

bT−1(β, i0)
η0(i0)

]2
−

b2T−1(β, i0)
η0(i0)

+ ψ(β, i0)

=
η0(i0)
a0(i0)

[
E0,x0,i0

(
X π̂

P

T

)
− A0,T−1x0 −

T−1∑
m=0

χm(β)

]2

− η0(i0)

(
T−1∑
m=0

χm(β)

)2

+ ψ(β, i0). (106)

This is the conclusion (36). □

Appendix I. The proof of Lemma 4.2

Proof. First, we prove Eq. (46) by mathematical induction. For
k = T , Eq. (46) holds obviously. Suppose that Eq. (46) holds for
T , T − 1, . . . , k + 1. Then,

ϖk = zk + Q (k)ϖk+1 =zk + Q (k)

⎛⎝ T−1∑
m=k+1

⎛⎝ m−1∏
j=k+1

Q (j)

⎞⎠ zm

⎞⎠
=

T−1∑
m=k

⎛⎝m−1∏
j=k

Q (j)

⎞⎠ zm,
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which shows that Eq. (46) holds for k. Hence, Eq. (46) holds for all
k = 0, 1, . . . , T .

Next, we prove Eq. (47) also by mathematical induction. For
k = T , Eq. (47) holds obviously. Suppose that Eq. (47) holds for
T , T − 1, . . . , k + 1. Then,

Wk = Q (k)Wk+1 + Q (k)ϖ2
k+1 − (Q (k)ϖk+1)

2

= Q (k)

⎛⎝ T−1∑
m=k+2

⎛⎝ m−1∏
j=k+1

Q (j)

⎞⎠ϖ2
m

−

T−1∑
m=k+2

⎛⎝ m−2∏
j=k+1

Q (j)

⎞⎠ (Q (m − 1)ϖm)
2

⎞⎠
+Q (k)ϖ2

k+1 − (Q (k)ϖk+1)
2

=

T−1∑
m=k+1

⎛⎝m−1∏
j=k

Q (j)

⎞⎠ϖ2
m

−

T−1∑
m=k+1

⎛⎝m−2∏
j=k

Q (j)

⎞⎠ (Q (m − 1)ϖm)
2, (107)

which means that Eq. (47) holds for k. So, Eq. (47) holds for all
k = 0, 1, . . . , T − 1. □

Appendix J. The proof of Theorem 4.4

Proof. We prove this theorem by mathematical induction. For
k = T − 1, by Eqs. (1), (39) and (40), we have

VT−1 (xT−1, i)
= max

πT−1(i)

{
ET−1,xT−1,i

(
VT
(
XπT , ξT

))
− ωET−1,xT−1,i

(
g2
T

(
XπT , ξT

))
+ω

[
ET−1,xT−1,i

(
gT
(
XπT , ξT

))]2}
= max

πT−1(i)

{
ET−1,xT−1,i

(
XπT
)
− ωET−1,xT−1,i

((
XπT
)2)

+ω
[
ET−1,xT−1,i

(
XπT
)]2}

= max
πT−1(i)

{
E
[
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

]
−ωE

[(
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

)2
]

+ω

[
E
(
AT−1,T−1xT−1 + BT−1(β) +

S ′

T−1(i)πT−1(i)
pT−1+y

)]2}

= max
πT−1(i)

{
AT−1,T−1xT−1 + BT−1(β) +

s′T−1(i)πT−1(i)
pT−1+y

−ω
π ′

T−1(i)
[
E
(
ST−1(i)S ′

T−1(i)
)
− sT−1(i)s′T−1(i)

]
πT−1(i)

p2T−1+y

}
= AT−1,T−1xT−1 + BT−1(β)

+ max
πT−1(i)

{
s′T−1(i)πT−1(i)

pT−1+y
− ω

π ′

T−1(i)covT−1(i)πT−1(i)

p2T−1+y

}
. (108)

Since ω > 0 and covT−1(i) is positive definite by Assumption 2.2,
the application of the first order condition to πT−1(i) yields the
following optimal solution

π̂E
T−1(i) =

pT−1+y

2ω
cov−1

T−1(i)sT−1(i). (109)

Substituting Eq. (109) into Eqs. (40) and (108) respectively, we
obtain

VT−1 (xT−1, i) = AT−1,T−1xT−1 + BT−1(β) +
s′T−1(i)cov

−1
T−1(i)sT−1(i)
4ω

= AT−1,T−1xT−1 + BT−1(β) +
1
4ω

zT−1(i), (110)

and

gT−1(xT−1, i) = ET−1,xT−1,i
(
gT
(
XπT , ξT

))
= ET−1,xT−1,i

(
XπT
)

= AT−1,T−1xT−1 + BT−1(β) +
1
2ω

zT−1(i). (111)

Because χT−1(β) = BT−1(β), ϖT−1(i) = zT−1(i) and WT−1(i) = 0,
Eqs. (109)–(111) show that Eqs. (48)–(50) hold for k = T − 1.

Now suppose that Eqs. (48)–(50) hold for T−1, T−2, . . . , k+1.
Then, for k, by the extended Bellman equation (39), we have

Vk(xk, i)
= max

πk(i)

{
Ek,xk,i

(
Vk+1

(
Xπk+1, ξk+1

))
− ωEk,xk,i

(
g2
k+1

(
Xπk+1, ξk+1

))
+ω

[
Ek,xk,i

(
gk+1

(
Xπk+1, ξk+1

))]2}
= max

πk(i)

{
Ek,xk,i

[
Ak+1,T−1Xπk+1 +

T−1∑
l=k+1

χl(β)

+
1
4ω

(ϖk+1 (ξk+1)− Wk+1 (ξk+1))

]

−ωEk,xk,i

⎡⎣(Ak+1,T−1Xπk+1 +

T−1∑
l=k+1

χl(β) +
1
2ω
ϖk+1(ξk+1)

)2
⎤⎦

+ω

[
Ek,xk,i

(
Ak+1,T−1Xπk+1 +

T−1∑
l=k+1

χl(β) +
1
2ω
ϖk+1(ξk+1)

)]2
⎫⎬⎭

= max
πk(i)

{
Ak,T−1xk +

T−1∑
l=k

χl(β)

+
1
4ω

Ek,xk,i [ϖk+1 (ξk+1)− Wk+1 (ξk+1)]

−ω
A2
k+1,T−1π

′

k(i)
[
E
(
Sk(i)S ′

k(i)
)
− sk(i)s′k(i)

]
πk(i)

p2k+y

+
Ak+1,T−1s′k(i)πk(i)

pk+y

−
1
4ω

[
Ek,xk,i

(
ϖ 2

k+1 (ξk+1)
)
− E2

k,xk,i
(ϖk+1 (ξk+1))

]
−

Ak+1,T−1
[
Ek,xk,i

(
ϖk+1 (ξk+1) S ′

k(i)
)
− Ek,xk,i (ϖk+1 (ξk+1)) s′k(i)

]
πk(i)

pk+y

}

= max
πk(i)

{
Ak,T−1xk +

T−1∑
l=k

χl(β) +
Ak+1,T−1s′k(i)πk(i)

pk+y

+
1
4ω

J∑
j=1

qij(k) [ϖk+1 (j)− Wk+1 (j)]

−ω
A2
k+1,T−1π

′

k(i)covk(i)πk(i)

p2k+y

−
1
4ω

⎛⎜⎝ J∑
j=1

qij(k)ϖ 2
k+1 (j)−

⎛⎝ J∑
j=1

qij(k)ϖk+1 (j)

⎞⎠2
⎞⎟⎠
⎫⎪⎬⎪⎭ , (112)

where the last equality uses the conclusion Ek,xk,i
(
ϖk+1 (ξk+1)

S ′

k(i)
)
− Ek,xk,i (ϖk+1 (ξk+1)) s′k(i) = 0, which holds due to the fact

that ϖk+1 (ξk+1) and S ′

k(i) are statistically independent. Because
ω > 0, A2

k+1,T−1 > 0 and covk(i) is positive definite by Assump-
tion 2.2, the application of the first order condition to πk(i) yields
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the optimal solution

π̂E
k (i) =

pk+y

2ωAk+1,T−1
cov−1

k (i)sk(i). (113)

Substituting Eq. (113) into Eqs. (112) and (40) respectively, we
obtain

Vk (xk, i)

= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
4ω

J∑
j=1

qij(k) [ϖk+1 (j)− Wk+1 (j)]

+
s′k(i)cov

−1
k (i)sk(i)
4ω

−
1
4ω

⎛⎜⎝ J∑
j=1

qij(k)ϖ 2
k+1 (j)−

⎛⎝ J∑
j=1

qij(k)ϖk+1 (j)

⎞⎠2
⎞⎟⎠

= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
4ω

(ϖk(i) − Wk(i)) , (114)

and

gk(xk, i) = Ek,xk,i
(
gk+1

(
Xπk+1, ξk+1

))
= Ek,xk,i

(
Ak+1,T−1Xπk+1 +

T−1∑
l=k+1

χl(β) +
1
2ω
ϖk+1(ξk+1)

)

= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
2ω

zk(i) +
1
2ω

J∑
j=1

qij(k)ϖk+1 (j)

= Ak,T−1xk +

T−1∑
l=k

χl(β) +
1
2ω
ϖk(i). (115)

Eqs. (113)–(115) show that Eqs. (48)–(50) hold for k. Hence,
Eqs. (48)–(50) hold for all k = 0, 1, . . . , T − 1. □
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