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This paper investigates the implications of strategic interaction (i.e., competition) between two CARA 

insurers on their reinsurance-investment policies. The two insurers are concerned about their terminal 

wealth and the relative performance measured by the difference in their terminal wealth. The problem 

of finding optimal policies for both insurers is modelled as a non-zero-sum stochastic differential game. 

The reinsurance premium is calculated using the variance premium principle and the insurers can invest 

in a risk-free asset, a risky asset with Heston’s stochastic volatility and a defaultable corporate bond. We 

derive the Nash equilibrium reinsurance policy and investment policy explicitly for the game and prove 

the corresponding verification theorem. The equilibrium strategy indicates that the best response of each 

insurer to the competition is to mimic the strategy of its opponent. Consequently, either the reinsurance 

strategy or the investment strategy of an insurer with the relative performance concern is riskier than 

that without the concern. Numerical examples are provided to demonstrate the findings of this study. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

l  

u  

a  

a

 

e  

t  

t  

b  

S  

t  

a  

f  

c  

s  

n  

t  
1. Introduction 

Studies of optimal reinsurance and/or investment decisions are

becoming a significant portion of the mainstream research of in-

surance and actuarial science. In a regular framework, an insurer

is assumed to purchase reinsurance contracts from a reinsurer to

reduce the risk of random individual claims, while the insurer may

invest in a financial market for a higher rate of return or to hedge

the risk of the claims, under certain optimality rules. Among many

others, for example, we refer to Browne (1995) and Azcue and

Muler (2013) with respect to minimizing the ruin probability, Yang

and Zhang (2005) and Zhu, Deng, Yue, and Deng (2015) with re-

spect to maximizing the utility of terminal wealth, and Chiu and

Wong (2012) and Bi, Meng, and Zhang (2014) with respect to the

mean-variance criterion. 

The majority of these studies do not consider the strategic in-

teraction (i.e., competition) among insurers. In this study, we con-

sider two competitive insurance companies that are concerned
∗ Corresponding author. 

E-mail addresses: dengchaohunan@163.com (C. Deng), xudongzeng@gmail.com 

(X. Zeng), zhuhuiming@hnu.edu.cn (H.M. Zhu). 
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ith their relative wealth. 1 The two companies competitively se-

ect their reinsurance and investment policies to maximize their

tilities based on their terminal wealth and relative wealth. We

nalyze their optimal reinsurance and investment policies within

 non-zero-sum differential game framework. 

This paper is related with prior studies of stochastic differ-

ntial games. Elliott (1976) analyzed the relationship between

he existence of the value of a zero-sum stochastic differen-

ial game and the Isaacs condition. Elliott’s study was followed

y many others including Zhang and Siu (2009) and Elliott and

iu (2011) about zero-sum stochastic differential games between

he investor/insurer and market. Browne (20 0 0) , Zeng (2010) ,

nd Taksar and Zeng (2011) considered zero-sum stochastic dif-

erential games between two competitive investors/insurers. By

ontrast, Bensoussan and Frehse (20 0 0) examined the non-zero-

um stochastic differential game with N players over an infi-

ite time horizon. By applying dynamic programming techniques,

he Nash equilibrium can be constructed as a solution to a sys-

em of parabolic partial differential equations. Espinosa and Touzi

2015) developed a non-zero-sum stochastic investment game with
1 Regarding more discussions on relative performance concern and its implica- 

ions, we refer to Corneo and Olivier (1997) , DeMarzo, Kaniel, and Kremer (2008) , 

nd Basak and Makarov (2014) . 
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 players who consider their relative performances against their

eers. Their study showed the existence and uniqueness of the

ash equilibrium for the cases of unconstrained and constrained

gents with exponential utilities within a Black-Scholes market

ramework. Bensoussan, Siu, Yam, and Yang (2014) formulated a

on-zero-sum stochastic differential investment and reinsurance

ame between two insurance companies whose surplus processes

ere modulated by continuous-time Markov chains. More stud-

es on non-zero-sum invest/reinsurance games may be found in

ang and Forsyth (2016) , Villena and Reus (2016) , and Pun, Siu,

nd Wong (2016) . 

The present study is motivated by Bensoussan et al. (2014) and

spinosa and Touzi (2015) , who investigated Black-Scholes finan-

ial markets. In this study, we consider a more general invest-

ent opportunity set that contains a risky asset (i.e., stock) and

 corporate bond that is defaultable. The majority of the afore-

entioned papers assumed Black-Scholes financial markets with

onstant volatilities; but it is well-known that such an assump-

ion is unrealistic. We thus relax this assumption and assume that

he stock price follows a Heston stochastic volatility model. The

eston model can explain a number of important empirical fea-

ures of real market data such as volatility clustering, fat tails of

eturn distributions and “volatility smile” (see Heston, 1993 ). Em-

loying the Heston model, Li, Zeng, and Lai (2012) derived an op-

imal time-consistent investment and a proportional reinsurance

olicy under a mean-variance criterion within a game framework.

hao, Rong, and Zhao (2013) obtained a closed-form expression

or the optimal excess-of-loss reinsurance and investment pol-

cy when the surplus could be characterized as a jump-diffusion

rocess. 

In addition to the stochastic volatility stock, we assume that in-

urers can invest into a defaultable bond. As a consequence of the

nancial crisis in 2008, investors and regulators have been paying

ore attention to default risk management, whereas the corpo-

ate bond market continues to develop. “The global corporate bond

arkets have almost tripled in size since 20 0 0, reaching 49 trillion

n 2013.”2 

There are two approaches in the existing literature that are

sed to model default. The first is the so-called structural ap-

roach. In this approach, a corporate bond is regarded as a contin-

ent claim on the value of a firm, and the default event occurs as

he first hitting time of the firm value on a given barrier. For more

nformation about this approach, we refer to Merton (1974) , Korn

nd Kraft (2003) and Lakner and Liang (2008) . The second is the

o-called reduced-form approach. The default time τ is modelled

s the first jump of a Poisson point process. Many prior studies

olved the problem of optimal portfolio/consumption choice using

he reduced-form model (e.g., Bielecki and Jang, 2006, Bo, Wang,

nd Yang, 2013 , Capponi and Figueroa López, 2014 and Sun, Aw,

oxton, & Teo, 2017 ). Our study adopts the reduced-form model

ecause it is more flexible. 

The contributions of this paper are summarized as follows. We

erive the equilibrium strategies of the game with default risk

nd obtain the corresponding value functions via the dynamic pro-

ramming approach. We find that when competition is considered,

ach insurance company will adopt a strategy riskier than that

hen no competition is involved. In addition, it is optimal to in-

est a positive amount in the defaultable market if the asset’s risk

remium is positive. The sensitivities of the equilibrium strategies

egarding model parameters are investigated and a verification the-

rem is provided. 
2 From Corporate Bond Markets: a Global Perspective by Tendulkar and Hancock 

2014) , Staff Working Paper of the IOSCO Research Department. Available at http: 

/www.iosco.org/research/pdf/swp/SW4- Corporate- Bond- Markets . 

W  

fi  

n

S  
Our paper differs from Bensoussan et al. (2014) in at least four

espects. First, we extend the models of Bensoussan et al. (2014) by

onsidering a more general financial market. In particular, the fi-

ancial market in our study is assumed to contain a risky as-

et with a Heston stochastic volatility and a defaultable corpo-

ate bond rather than the standard Black-Scholes market used by

ensoussan et al. (2014) . As a result, our study discloses effects

f defaultable bonds and stochastic volatility on investment. We

emonstrate that insurers will reduce investment in the risk-free

ond in the presence of a defaultable bond and modify investment

trategies of the risky asset against unfavourable changes of the

tochastic volatility process. 

Second, in accordance with the expected value criterion, if the

xpectations of two claims are the same, the same premium will

e charged. However, the two claims may have different volatilities

ence contain different risk. Com pared with the expected value

riterion, the variance premium principle considering the volatil-

ty of random individual loss may be more realistic than the ex-

ected premium criteria. The reinsurance premium in our study is

alculated using the variance premium principle rather than the

xpected premium principle in Bensoussan et al. (2014) . 

Third, we obtain the equilibrium strategies in a more gen-

ral environment as well as a detailed analysis on the impacts

f competition on insurers’ reinsurance-investment rules. We find

he herd effect on insurers’ decisions, that is, each insurers will

ake decisions by mimicking its opponent’s strategy. In contrast,

ensoussan et al. (2014) focus on deriving the equilibrium strate-

ies for the non-zero-sum game, not on a comprehensive analy-

is of the impacts of competition on insurers’ decision-making be-

aviours. 

Finally, to prove verification theorems, Bensoussan et al.

2014) make a uniform Lipschitz condition assumption on the coef-

cients of the asset dynamic processes. Because the Heston model

oes not satisfy this uniform Lipschitz condition, we provide a ver-

fication theorem with a locally Lipschitz condition using Zeng and

aksar ’s (2013) approach. 

The remainder of this paper is organized as follows.

ection 2 introduces the basic model setup of each insurance

ompany. Section 3 formulates the non-zero-sum stochastic dif-

erential reinsurance and investment optimization game between

wo competitive insurance companies. In Section 4 , we derive the

JB equation for the pre- and post-default cases; then, the explicit

xpressions for Nash equilibrium strategies and the corresponding

alue functions are obtained. In addition, we prove the corre-

ponding verification theorem. In Section 5 , numerical examples

re provided and finally, we conclude the study in Section 6 . 

. Model setup 

.1. Dynamics of the financial assets 

We consider a financial market that consists of a risk-free bond,

 risky asset (i.e., a stock) and a corporate zero coupon bond that is

efaultable. The price processes are denoted by { S 0 ( t )} t ≥ 0 , { S ( t )} t ≥ 0 

nd { p ( t , T 1 )} t ≥ 0 , where T 1 is a fixed time horizon. The processes

re defined in a completely filtered probability space (�, G, P ) ,

here P is the real-world probability measure, G := {G t } t≥0 is an

nlarged filtration given by G t = F t ∨ σ { H s : 0 ≤ s ≤ t} (the filtra-

ions F t and H t will be introduced later). Let B 1 ( t ), B 2 ( t ), W 1 ( t ) and

 2 ( t ) be four standard Brownian motions on (�, F , P ) . The natural

ltration F := {F t } t≥0 satisfies the usual hypotheses of complete-

ess and right continuity. 

The price process of the risk-free asset is given by 

 0 (t) = rS 0 (t ) dt , (2.1)

http://www.iosco.org/research/pdf/swp/SW4-Corporate-Bond-Markets


1146 C. Deng et al. / European Journal of Operational Research 264 (2018) 1144–1158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

 

C

 

 

a  

r  

N  

u  

m

 

c  

r  

b

d  

w  

k  

a  

δ  

s  

 

w  

a  

c  

m

C

w  

r

ρ

T  

t

d

2

 

i  

b  

a  

t  

c

d

 

w  

k  

t  

c  

i  

r

D  

e

(

(

(

where r is a constant. The stock price follows a Heston stochastic

volatility model (see Section 2 in Liu, 2007 ): { 

dS(t) = S(t) 
[ 
(r + αL (t)) dt + 

√ 

L (t) dW 1 (t) 
] 
, 

dL (t) = K(β − L (t)) dt + ν
√ 

L (t) dW 2 (t) , 

(2.2)

where W 1 ( t ) and W 2 ( t ) are standard Brownian motions;

E[ d W 1 (t) d W 2 (t)] = ˆ ρdt, S(0) = s > 0 ; L (0) = l > 0 ; β > 0 is the

long run average of the variance process; and ν > 0 is the volatil-

ity of the variance. We need 2 Kβ ≥ ν2 to ensure that L ( t ) is

non-negative almost surely. 

Next, we model the price process for a corporate zero coupon

bond directly under the real-world probability measure P , follow-

ing Bielecki and Jang (2006) . 

We assume that T 1 is the maturity date of the corporate bond.

This bond is defaultable, we assume that the market value is recov-

ered at the default time, as done by Duffie and Singleton (1999) .

Let τ denotes the default time of the corporate bond. We assume

that τ is the first jump time of a Poisson process with constant

jump intensity h Q under a risk-neutral measure Q , which is equiv-

alent to the real-world probability measure P . The default process

is H(t) = I { τ≤t} . Let G t be the smallest filtration containing the ref-

erence filtration F t and under which τ is a stopping time; this

means that G t = F t ∨ H t = F t ∨ σ { H s : 0 ≤ s ≤ t} . Such an informa-

tion structure is standard in the reduced-form approach. We for-

mulate this model under the martingale invariance property, which

is generally called the ( H ) hypothesis (see Section 6.1.1 in Bielecki

and Rutkowski, 2001 , and Proposition 1 in Blanchet-Scalliet & Jean-

blanc, 2004 ): under the real-world probability measure P , every

square-integrable F t -martingale is also a square-integrable martin-

gale under the enlarged filtration G t . 
In the case of default, the investor recovers a fraction of the

market value of the defaultable bond just prior to default. Let

ζ ∈ (0, 1) denote the constant loss rate of the corporate bond. In

alignment with Lemma 3 in Bielecki and Jang (2006) , we assume

the corporate bond price is given by 

dp(t, T 1 ) = p(t−, T 1 )[ rdt + (1 − H(t−)) η(1 − �) dt 

−(1 − H(t −)) ζdM 

P (t )] , (2.3)

where we use { 

p(t, T 1 ) = e −(r+ η)(T 1 −t) if t ∈ [0 , τ ∧ T 1 ] , 

p(t, T 1 ) = (1 − ζ ) e −(r+ η)(T 1 −τ ) e r(t−τ ) if t ∈ [ τ ∧ T 1 , T 1 ] , 
(2.4)

M 

P (t) = H(t) − h Q 
∫ t 

0 �(1 − H(u −)) du is a G-martingale under P ;

η = h Q ζ is the credit spread under the real-world probability mea-

sure; 1 
� ≥ 1 denotes the constant default risk premium and the

arrival intensity of the default under the measure Q is given by

h Q = h P / � . 

2.2. Dynamics of the surplus processes 

Suppose that there are two competing insurance companies,

whose reserve processes U k ( t ), k = 1 , 2 are modelled by 

U k (t) = u k + d k t − C k (t) , f or k = 1 , 2 , 

 k (0) = u k ≥ 0 , 

where d k is the constant rate of the premium received by the in-

surance company k and the aggregate claims processes for the two

companies are given by 

 1 (t) = 

N 1 (t)+ N(t) ∑ 

i =1 

X i and C 2 (t) = 

N 2 (t)+ N(t) ∑ 

i =1 

Y i , 

where C 1 ( t ) and C 2 ( t ) are two compound Poisson processes defined

on (�, F , P ) . N ( t ), N ( t ) and N ( t ) are three mutually independent
1 2 
nd homogeneous Poisson processes with intensities λ1 , λ2 , and λ,

espectively. The claim’s sizes { X i } i ∈ N + ( { Y i } i ∈ N + ) are independent of

 ( t ), N 1 ( t ) and N 2 ( t ); they are i.i.d. random variables with a contin-

ous distribution function F X ( F Y ) and finite first and second mo-

ents μ1 ( μ2 ) and σ 0 
1 
(σ 0 

2 
) . 

We now consider the situation where each insurance company

an transfer the claim risk by continuously purchasing proportional

einsurance. Then, the corresponding reserve process for insurer k

ecomes: 

U 

q k 
k 

(t) = (d k − δ(q k (t))) dt − q k (t) dC k (t) , f or k = 1 , 2 , (2.5)

here q k ( t ) ∈ [0, 1] represents the proportion insured by insurer

 ; thus, 1 − q k (t) is the proportion reinsured to the reinsur-

nce company. Assume that the constant reinsurance premium

( q k ( t )) is calculated by the variance principle; thus, insurer k

hould pay a reinsurance premium at a continuous rate δ(q k (t)) =
(1 − q k (t)) n k + �(1 − q k (t)) 2 σ 2 

k 
with a safety loading of �> 0,

here n 1 = (λ1 + λ) E(X i ) , n 2 = (λ2 + λ) E(Y i ) , σ
2 
1 

= (λ1 + λ) E(X 2 
i 
)

nd σ 2 
2 

= (λ2 + λ) E(Y 2 
i 
) . As in Section 3 of Grandell (1977) , the

ompound Poisson process C i can be approximated by Brownian

otion with drift: 

 k (t) ≈ n k t − σk B k (t) , 

here B 1 ( t ) and B 2 ( t ) are standard Brownian motions with the cor-

elation coefficient 

= 

λE (X i ) E (Y i ) √ 

(λ1 + λ) E(X 

2 
i 
)(λ2 + λ) E(Y 2 

i 
) 

= 

λμ1 μ2 

σ1 σ2 

. 

herefore, E[ B 1 (t) B 2 (t)] = ρt and the continuous-time dynamics of

he reserve process for the insurer k is finally formulated as 

 ̂

 U 

q k 
k 

(t) = (d k − δ(q k (t)) − q k (t) n k ) dt + q k (t) σk dB k (t) , k = 1 , 2 . 

.3. Wealth processes 

In this model, we assume that each insurer continuously invests

n the risk-free bond, the stock and the corporate zero coupon

ond, and purchases reinsurance contracts from the same reinsur-

nce company. The investment horizon is [0, T ] and T < T 1 . Thus, in

he defaultable financial market described above, the wealth pro-

ess of insurer k is given by 

Z 
πk 

k 
(t) = 

(Z 
πk 

k 
(t) − θk (t) − γk (t)) 

S 0 (t) 
dS 0 (t) + 

θk (t) 

S(t) 
dS(t) 

+ 

γk (t) 

p(t−, T 1 ) 
dp(t, T 1 ) + (d k − δ(q k (t)) 

−q k (t) n k ) dt + σk q k (t) dB k (t) 

= [ rZ 
πk 

k 
(t) + (d k − δ(q k (t)) − q k (t) n k ) + θk (t ) αL (t ) 

+ γk (t)(1 − H(t−)) η(1 − �)] dt + θk (t) 
√ 

L (t) dW 1 (t) 

+ σk q k (t) dB k (t) − γk (t) ζ (1 − H(t −)) dM 

P (t ) , (2.6)

here θ k ( t ) and γ k ( t ) represent the dollar amounts of insurer

 ’s wealth invested in the stock and the corporate bond, respec-

ively; and 1 − q k (t) denotes the proportional reinsurance pur-

hased by insurer k at time t . We assume that the corporate bond

s not traded after default. Let πk (t) = (q k (t) , θk (t) , γk (t)) be a

einsurance-investment strategy followed by insurer k . 

efinition 2.1. A tripe process { π k ( t )} t ∈ [0, T ] is an admissible strat-

gy if 

1) π k ( t ) is a G t -progressively measurable process; 

2) 
∫ T 

0 [ σ
2 
k 

q k (t) 2 + θk (t ) 2 L (t )] dt < ∞;
3) Under π k , the SDE (2.6) has a unique strong solution. 
Let �k denotes the space of all admissible strategies. 
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. Formulation of a non-zero-sum game 

Both of the insurance companies choose an admissible reinsur-

nce and investment strategy π k to maximize their own terminal

ealth. Each insurer cares about the difference between its termi-

al wealth and the other’s, and tries to perform better relative to

ts competitor. We formulate this optimization problem as a non-

ero sum stochastic differential game between the two competi-

ive insurers. We only consider games with perfect revelation, or

erfect observation, such that the insurers’ choices are instanta-

eously revealed to its opponent. The game (i.e., the competition)

erminates at time T . 

Given Z 
πk 

k 
(t) = z k , Z 

π j 

j 
(t) = z j , L (t) = l, H(t) = h, we define a

on-zero-sum stochastic differential game with the following pay-

ff (objective) functions (see Bensoussan et al., 2014 or Espinosa &

ouzi, 2015 ) for j 
 = k ∈ {1, 2}, 

 

(πk ,π j ) 

k 
(t, z k , z j , l, h ) 

= E 

[ 
U k 

(
(1 − ω k ) Z 

πk 

k 
(T ) + ω k (Z 

πk 

k 
(T ) − Z 

π j 

j 
(T )) 

)∣∣∣(Z 
πk 

k 
(t) , 

Z 
π j 

j 
(t) , L (t) , H(t)) = (z k , z j , l, h ) 

] 
= E 

[ 
U k 

(
Z 

πk 

k 
(T ) − ω k Z 

π j 

j 
(T ) 

)∣∣∣(Z 
πk 

k 
(t) , Z 

π j 

j 
(t ) , L (t ) , H(t )) 

= (z k , z j , l, h ) 
] 
, (3.1) 

here U k is a strictly increasing and strictly concave smooth utility

unction for insurer (i.e., player) k (i.e., U ′ 
k 

> 0 and U ′′ 
k 

< 0 ). The pa-

ameter ω k ∈ [0 , 1] , k = 1 , 2 , describes insurer k ’s performance rel-

tive to its competitor j ( j 
 = k ∈ {1, 2}). A greater ω k means that in-

urer k cares more about its relative wealth. 

roblem 3.1. The classical non-zero-sum stochastic differential

ame problem is to find a Nash equilibrium (π ∗
1 
, π ∗

2 
) ∈ �1 × �2 

uch that 

 

(π ∗
1 ,π

∗
2 ) 

1 
(t, z 1 , z 2 , l, h ) ≥ J 

(π1 ,π
∗
2 ) 

1 
(t, z 1 , z 2 , l, h ) , (3.2)

nd 

 

(π ∗
1 ,π

∗
2 ) 

2 
(t, z 1 , z 2 , l, h ) ≥ J 

(π ∗
1 ,π2 ) 

2 
(t, z 1 , z 2 , l, h ) . (3.3)

If (3.2) and (3.3) hold, then we respectively define the value

unctions of insurers 1 and 2 as follow: 

 1 (t, z 1 , z 2 , l, h ) = J 
(π ∗

1 ,π
∗
2 ) 

1 
(t, z 1 , z 2 , l, h ) = sup 

π1 ∈ �1 

J 
(π1 ,π

∗
2 ) 

1 
(t, z 1 , z 2 , l, h )

(3.4) 

nd 

 2 (t, z 1 , z 2 , l, h ) = J 
(π ∗

1 ,π
∗
2 ) 

2 
(t, z 1 , z 2 , l, h ) = sup 

π2 ∈ �2 

J 
(π ∗

1 ,π2 ) 

2 
(t, z 1 , z 2 , l, h ) . 

(3.5) 

e refer the admissible strategies π ∗
1 

and π ∗
2 

as the competitively

ptimal reinsurance and investment strategies. 

To establish a Nash equilibrium for the above problem, we first

efine that ̂ Z 
πk 

k 
(t) 

� = Z 
πk 

k 
(t) − ω k Z 

π j 

j 
(t) after fixing π j for j 
 = k ∈ {1,

}, and it readily follows that: 

 ̂

 Z 
πk 

k 
(t) = [ r ̂  Z 

πk 

k 
(t) + (d k − ω k d j ) − (δ(q k (t)) − ω k δ(q j (t))) 

−(q k (t) n k − ω k q j (t) n j ) + (θk (t) − ω k θ j (t)) αL (t) 

+(γk (t) − ω k γ j (t))(1 − H(t)) η(1 − �)] dt 

+(θk (t) − ω k θ j (t)) 
√ 

L (t) dW 1 (t) + σk q k (t) dB k (t) 

−ω k σ j q j (t) dB j (t) − (γk (t) 

−ω k γ j (t)) ζ (1 − H(t−)) dM 

P (t) , (3.6) 

ith ̂

 Z 
πk 

k 
(0) = z k − ω k z j . 
For L (t) = l, H(t) = h and 

̂ Z 
πk 

k 
(t) = z k − ω k z j , where 0 ≤ t ≤ T

nd k 
 = j ∈ {1, 2}, let: 

 k (t, ̂  z k , l, h ) 
� = sup 

πk ∈ �k 

E 

[ 
U k 

(
Z 

πk 

k 
(T ) − ω k Z 

π ∗
j 

j 
(T ) 

)
| ̂  Z 

πk 

k 
(t) 

= ̂

 z k , L (t) = l, H(t) = h 

] 
, (3.7) 

e the value function in R 

+ × R × R 

+ × { 0 , 1 } . 
. Solution to the non-zero-sum game for CARA preference 

Compared to an individual investor, the insurance company has

onsiderable wealth, and thus, the risk aversion coefficient is rel-

tively stable and can be regarded as a constant value. Moreover,

he ruin event may occur for an insurer, as a consequence, the in-

urer’s wealth may be negative. In view of this fact, we assume

nsurers with exponential utility preferences. 

Suppose that insurer k has the following exponential utility

unction 

 k ( ̂  z k ) = − 1 

m k 

e −m k ̂  z k , f or k = 1 , 2 , 

here m k is a positive constant(i.e., a constant absolute risk aver-

ion coefficient). Using standard dynamic programming techniques,

e see that the value function J k satisfies the following HJB partial

ifferential equation: 

sup πk ∈ �k 
L 

πk 

k 
J k (t, ̂  z k , l, h ) = 0 , 

J k (T , ̂  z k , l, h ) = U k ( ̂  z k ) , 
(4.1) 

or all t ∈ [0, T ], where 

 

πk 

k 
J k (t, ̂  z k , l, h ) 

= 

∂ J k (t, ̂  z k , l, h ) 

∂t 
+ 

{ [ 
r ̂  z k + (d k −ω k d j ) − (δ(q k (t)) − ω k δ(q ∗j (t))) 

−(q k (t) n k − ω k q 
∗
j (t) n j ) + (θk (t) − ω k θ

∗
j (t)) αl 

+(γk (t) − ω k γ
∗
j (t)) × (1 − h ) η

] 
∂ J k (t, ̂  z k , l, h ) 

∂ ̂  z k 

+ 

1 

2 

[ 
(θk (t) − ω k θ

∗
j (t)) 2 l + σ 2 

k q 
2 
k (t) + ω 

2 
k σ

2 
j q 

∗2 
j (t) 

−2 ρω k σk σ j q k (t) q ∗j (t) 
] 
∂ 2 J k (t, ̂  z k , l, h ) 

∂ ̂  z 2 
k 

+ K( β−l) 
∂ J k ( t, ̂  z k , l, h ) 

∂ l 

+ 

1 

2 

ν2 l 
∂ 2 J k (t, ̂  z k , l, h ) 

∂ l 2 
+ ˆ ρ(θk (t) − ω k θ

∗
j (t)) νl 

∂ 2 J k (t, ̂  z k , l, h ) 

∂ ̂  z k ∂ l 

+ 

(
J k (t, ̂  z k −(γk (t) −ω k γ

∗
j (t)) ζ , l, h + 1) −J k (t, ̂  z k , l, h ) 

)
h 

P (1 −h ) 
} 

.

We solve this nonlinear HJB equation by two steps. 

Step 1. We split the original value function into two pieces that

epresent the pre- and post-default value functions: 

 k (t, ̂  z k , l, h ) = 

{
J k (t, ̂  z k , l, 0) , if h = 0 ( the pre - default case ) , 

J k (t, ̂  z k , l, 1) , if h = 1 ( the post - default case ) . 

tep 2. We reduce the HJB Eq. (4.1) into two simple HJB equations

hat are satisfied by the pre-default value function and the post-

efault value function, respectively. Then, we solve the HJB equa-

ion for the post-default value function using the standard dynamic

rogramming approach. After that, the pre-default value function is

olved. 

.1. Equilibrium strategy after default 

In this subsection, we derive the Nash equilibrium reinsurance-

nvestment strategy to characterize the insurers’ strategic in-

eractions with the relative performance concerns after default.
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Theorem 4.1 describes the post-default equilibrium strategy and its

associated value functions. 

Theorem 4.1. [Post-default] For any t ∈ [ τ∧ T , T ], the equilibrium in-

vestment strategy of stock asset is described by 

θ ∗
k (t) = 

̂ θ ∗
k 
(t) + ω k ̂

 θ ∗
j 
(t) 

1 − ω k ω j 

, f or k 
 = j ∈ { 1 , 2 } , (4.2)

where ̂ θ ∗
k 
(t) = ( αm k 

+ 

f k (t) ̂  ρν
m k 

) e −r(T −t) . The equilibrium investment

strategy of corporate bond is 

γ ∗
k (t) = 0 , f or k = 1 , 2 . (4.3)

For the equilibrium reinsurance policy q ∗
k 
(t) , k = 1 , 2 , we define: ⎧ ⎪ ⎨ ⎪ ⎩ 

˜ q 1 (t) = 

̂ q ∗1 (t) + b 1 (t) ̂  q ∗2 (t) 

1 − b 1 (t) b 2 (t) 
, 

˜ q 2 (t) = 

̂ q ∗2 (t) + b 2 (t) ̂  q ∗1 (t) 

1 − b 1 (t) b 2 (t) 
, 

(4.4)

where b 1 (t) = 

λμ1 μ2 ω 1 m 1 e 
r(T−t) 

m 1 σ
2 
1 

e r(T−t) +2 σ 2 
1 
�

, b 2 (t ) = 

λμ1 μ2 ω 2 m 2 e 
r(T−t) 

m 2 σ
2 
2 

e r(T−t) +2 σ 2 
2 
�

, ̂ q ∗
1 
(t ) =

2�
m 1 e 

r(T−t) +2�
and ̂ q ∗

2 
(t) = 

2�
m 2 e 

r(T−t) +2�
. Then, we have the equilibrium

reinsurance strategy 

q ∗k (t) = ̃

 q ∗k (t) ∧ 1 , k = 1 , 2 . (4.5)

The value function is given by 

J k (t, ̂  z k , l, 1) = − 1 

m k 

exp {−m k ̂  z k e 
r(T −t) + g k (t) + f k (t) l} , (4.6)

where 

g k (t) = 

∫ T 

t 

{ [ 
(d k − ω k d j ) − (δ(q ∗k (u )) − ω k δ(q ∗j (u ))) 

−(q ∗k (u ) n k − ω k q 
∗
j (u ) n j ) 

] 
×(−m k e 

r(T −u ) ) 

+ 

1 

2 

[ 
σ 2 

k q 
∗2 
k (u ) + ω 

2 
k σ

2 
j q 

∗2 
j (u ) − 2 ρω k σk σ j q 

∗
k (u ) q ∗j (u ) 

] 
×m 

2 
k e 

2 r(T −u ) + Kβ f k (u ) 
} 

du (4.7)

and 

f k (t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

e (ϑ 1 −ϑ 2 )(T −t) − 1 

e (ϑ 1 −ϑ 2 )(T −t) − ϑ 2 
ϑ 1 

ϑ 2 , ̂ ρ 
 = ±1 , 

− α2 

2(K + να) 
[1 − e −(K+ να)(T −t) ] , ̂ ρ = 1 , 

− α2 

2(K − να) 
[1 − e −(K−να)(T −t) ] , ̂ ρ = −1 and K 
 = να,

−α2 

2 

(T − t) , ̂ ρ = −1 and K = να,

(4.8)

where 

ϑ 1 , 2 = 

K + ̂

 ρνα ±
√ 

K 

2 + 2 ̂

 ρναK + ν2 α2 

2 

. (4.9)

Proof. This proof is similar to that in Theorem 4.2 , we omit it. �

Note that the equilibrium investment strategies γ ∗
k 
(t) = 0 , k =

1 , 2 because the defaultable bond can not be traded after default.

Based on the results of Theorem 4.1 , the following subsection will

derive the equilibrium strategies and associated value functions for

each insurer before default. 
.2. Equilibrium strategy before default 

In this subsection, we address the non-zero-sum stochastic dif-

erential reinsurance-investment game before default and provide

xplicit expressions of the pre-default equilibrium strategy and as-

ociated value functions. 

heorem 4.2. [Pre-default] For any t ∈ [0, τ∧ T ] and k = 1 , 2 , The

quilibrium investment strategy γ ∗
k 
(t) is given by 

∗
k (t) = 

̂ γ ∗
k 
(t) + ω k ̂  γ ∗

j 
(t) 

1 − ω k ω j 

, f or k 
 = j ∈ 1 , 2 , (4.10)

here ̂ γ ∗
k 
(t) = 

( ln 1 
�

+�−1) e 
− η

ζ
(T−t) −�+1 

m k ζ
e −r(T −t) , k = 1 , 2 . 

For the equilibrium investment strategy θ ∗
k 
(t) and reinsurance

trategy q ∗
k 
(t) are given by (4.2) and (4.5) , respectively. The value

unction is then given by 

 k (t, ̂  z k , l, 0) = − 1 

m k 

exp {−m k ̂  z k e 
r(T −t) + g k (t) + G k (t) + f k (t) l} 

= J k (t, ̂  z k , l, 1) e G k (t) , (4.11)

here 

 k (t) = 

(
ln 

1 

�
+ � − 1 

)
e −

η
ζ
(T −t) − ln 

1 

�
− � + 1 . (4.12)

roof. When H(t) = 0 , the HJB Eq. (4.1) becomes: 

 = 

∂ J k (t, ̂  z k , l, 0) 

∂t 
+ 

{ [ 
r ̂  z k + (d k −ω k d j ) −(δ(q k (t)) −ω k δ(q ∗j (t))) 

−(q k (t) n k − ω k q 
∗
j (t) n j ) + (θk (t) − ω k θ

∗
j (t)) αl 

+(γk (t) − ω k γ
∗
j (t)) η

] 
∂ J k (t, ̂  z k , l, 0) 

∂ ̂  z k 
+ 

1 

2 

[ 
( θk ( t) −ω k θ

∗
j ( t)) 

2 l 

+ σ 2 
k q 

2 
k (t) + ω 

2 
k σ

2 
j q 

∗2 
j (t) − 2 ρω k σk σ j q k (t ) q ∗j (t ) 

] 
×∂ 2 J k (t, ̂  z k , l, 0) 

∂ ̂  z 2 
k 

+ K(β − l ) 
∂ J k (t, ̂  z k , l , 0) 

∂ l 

+ 

1 

2 

ν2 l 
∂ 2 J k (t, ̂  z k , l, 0) 

∂ l 2 
+ ˆ ρ(θk (t) − ω k θ

∗
j (t)) νl 

∂ 2 J k (t, ̂  z k , l, 0) 

∂ ̂  z k ∂ l 

+ 

(
J k (t, ̂  z k − (γk (t) − ω k γ

∗
j (t)) ζ , l, 1) − J k (t, ̂  z k , l, 0) 

)
h 

P 
} 

(4.13)

ith the boundary condition J k (T , ̂  z k , v , 0) = − 1 
m k 

e −m k ̂
 z k . To solve

his equation, we conjecture that 

 k (t, ̂  z k , l, 0) = − 1 

m k 

exp {−m k ̂  z k e 
r(T −t) + g 0 k (t) + f 0 k (t) l} , (4.14)

here g 0 k ( t ), f 0 k t are two functions to determine later. Then we

btain: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ J k (t, ̂  z k , l, 0) 

∂t 
= J k (t, ̂  z k , l, 0)(m k ̂  z k re r(T −t) + g ′ 0 k (t) + f ′ 0 k (t) l) , 

∂ J k (t, ̂  z k , l, 0) 

∂ ̂  z k 
= J k (t, ̂  z k , l, 0)(−m k e 

r(T −t) ) , 

∂ 2 J k (t, ̂  z k , l, 0) 

∂ ̂  z 2 
k 

= J k (t, ̂  z k , l, 0)(m 

2 
k e 

2 r(T −t) ) , 

∂ J k (t, ̂  z k , l, 0) 

∂ l 
= f 0 k (t) J k (t, ̂  z k , l, 0) , 

∂ 2 J k (t, ̂  z k , l, 0) 

∂ l 2 
= f 2 0 k (t) J k (t, ̂  z k , l, 0) , 

∂ 2 J k (t, ̂  z k , l, 0) 

∂ ̂  z k ∂ l 
= −m k e 

r(T −t) f 0 k (t) J k (t, ̂  z k , l, 0) . 

(4.15)
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nserting (4.15) into the HJB Eq. (4.13) leads to the following differ-

ntial equation: 

 = g ′ 0 k (t) + f ′ 0 k (t) l + K(β − l) f 0 k (t) + 

1 

2 

ν2 l f 2 0 k (t) 

+ inf 
q k (t) 

{ [ 
(d k − ω k d j ) − (δ(q k (t)) − ω k δ(q ∗j (t))) 

−(q k (t) n k − ω k q 
∗
j (t) n j ) 

] 
(−m k e 

r(T −t) ) 

+ 

1 

2 

[ 
σ 2 

k q 
2 
k (t) + ω 

2 
k σ

2 
j q 

∗2 
j (t) − 2 ρω k σk σ j q k (t ) q ∗j (t ) 

] 
×m 

2 
k e 

2 r(T −t) 
} 

+ inf 
θk (t) 

{ 

(θk (t) − ω k θ
∗
j (t)) αl(−m k e 

r(T −t) ) 

+ 

1 

2 

[ 
(θk (t) − ω k θ

∗
j (t)) 2 lm 

2 
k e 

2 r(T −t) − 2 f 0 k (t) 

×(θk (t) − ω k θ
∗
j ) ̂  ρνlm k e 

r(T −t) 
] } 

+ inf 
γk (t) 

{ 

(γk (t) − ω k γ
∗
j (t)) η(−m k e 

r(T −t) ) 

+ 

(
e m k (γk (t) −ω k γ

∗
j 
(t)) ζ e r(T−t) +(g k (t ) −g 0 k (t ))+( f k (t ) − f 0 k (t )) l − 1 

)
×h 

P 
} 

. 

(4.16) 

sing the first-order conditions for a regular interior minimizer of

4.16) , we have 

 

 

 

 

 

q ∗1 (t) = 

(
2�

m 1 e r(T −t) + 2�
+ 

ρω 1 σ2 m 1 e 
r(T −t) 

m 1 σ1 e r(T −t) + 2 σ1 �
q ∗2 (t) 

)
∧ 1 , 

q ∗2 (t) = 

(
2�

m 2 e r(T −t) + 2�
+ 

ρω 2 σ1 m 2 e 
r(T −t) 

m 2 σ2 e r(T −t) + 2 σ2 �
q ∗1 (t) 

)
∧ 1 , 

(4.17) 

 

 

 

 

 

 

 

θ ∗
1 (t) = 

(
α

m 1 

+ 

f 01 (t) ̂  ρν

m 1 

)
e −r(T −t) + ω 1 θ

∗
2 (t) , 

θ ∗
2 (t) = 

(
α

m 2 

+ 

f 02 (t) ̂  ρν

m 2 

)
e −r(T −t) + ω 2 θ

∗
1 (t) , 

(4.18) 

nd 

 

 

 

 

 

 

 

γ ∗
1 (t) = 

ln 1 
� + (g 01 (t) − g 1 (t)) + ( f 01 (t) − f 1 (t)) l 

m 1 ζ
e −r(T −t) + ω 1 γ

∗
2 ( t) , 

γ ∗
2 (t) = 

ln 1 
� + (g 02 (t) − g 2 (t)) + ( f 02 (t) − f 2 (t)) l 

m 2 ζ
e −r(T −t) + ω 2 γ

∗
1 ( t) . 

(4.19) 

e can derive the equilibrium strategies θ ∗
k 
(t) (resp. γ ∗

k 
(t) ) in

4.2) (resp. (4.10) ) in a simple and straightforward manner. More-

ver, from the system of Eq. (4.17) , we find that the equilibrium

einsurance strategy before default is the same as that after default

n Theorem 4.1 . 

For the equilibrium reinsurance strategies q ∗
k 
(t) , we first de-

ne ˜ q k (t) as (4.4) , which is the solution of the following system

f equations: 
 

 

 

 

 

 

 

˜ q 1 (t) = 

2�

m 1 e r(T −t) + 2�
+ 

ρω 1 σ2 m 1 e 
r(T −t) 

m 1 σ1 e r(T −t) + 2 σ1 �
˜ q 2 (t) , 

˜ q 2 (t) = 

2�

m 2 e r(T −t) + 2�
+ 

ρω 2 σ1 m 2 e 
r(T −t) 

m 2 σ2 e r(T −t) + 2 σ2 �
˜ q 1 (t) . 

se the fact that 1 ≥ω k ≥ 0, σ k > 0, �> 0, m k > 0, 1 ≥ρ ≥ 0, and

erive that ̃  q k (t) ≥ 0 because 

 −b 1 (t) b 2 (t) = 1 − ρ2 ω 1 ω 2 σ1 σ2 m 1 m 2 e 
2 r(T −t) 

(m 1 σ1 e r(T −t) + 2 σ1 �)(m 2 σ2 e r(T −t) + 2 σ2 �) 
≥ 0 . 

hen, we can obtain the following equilibrium reinsurance strate-

ies in four cases. 
If ̃  q k (t) ≤ 1 , k = 1 , 2 , q ∗
k 
(t) = ̃

 q k (t) . 

If ˜ q 1 (t) ≤ 1 and 

˜ q 2 (t) > 1 , we have q ∗2 (t) = 1 . From system of

q. (4.17) , we have that q ∗1 (t) = 

2�
m 1 e 

r(T−t) +2�
+ 

ρω 1 σ2 m 1 e 
r(T−t) 

m 1 σ1 e 
r(T−t) +2 σ1 �

=
2�

m 1 e 
r(T−t) +2�

+ 

λμ1 μ2 ω 1 m 1 e 
r(T−t) 

m 1 σ
2 
1 

e r(T−t) +2 σ 2 
1 
�

. 

Similarly, if ˜ q 1 (t) > 1 and 

˜ q 2 (t) ≤ 1 , it indicate that

(q ∗
1 
(t) , q ∗

2 
(t)) = 

(
1 , 2�

m 2 e 
r(T−t) +2�

+ 

λμ1 μ2 ω 2 m 2 e 
r(T−t) 

m 2 σ
2 
2 

e r(T−t) +2 σ 2 
2 
�

)
. 

If ̃  q k (t) > 1 , k = 1 , 2 , we have q ∗1 (t) = 1 and q ∗2 (t) = 1 . Therefor,

e can conclude that 

 

∗
k (t) = ̃

 q ∗k (t) ∧ 1 , k = 1 , 2 . 

ubstituting these equilibrium rules into (4.16) , we obtain 

 = g ′ 0 k (t) + 

[ 
(d k − ω k d j ) − (δ(q ∗k (t)) − ω k δ(q ∗j (t))) 

−(q ∗k (t) n k − ω k q 
∗
j (t) n j ) 

] 
×(−m k e 

r(T −t) ) 

+ 

1 

2 

[ 
σ 2 

k q 
∗2 
k (t) + ω 

2 
k σ

2 
j q 

∗2 
j (t) −2 ρω k σk σ j q 

∗
k (t) q ∗j (t) 

] 
m 

2 
k e 

2 r(T −t) 

+ Kβ f 0 k (t) − η

ζ
ln 

1 

�
+ h 

P 
(

1 

�
− 1 

)
+ 

g k (t) − g 0 k (t) 

ζ
η

+ 

[ 
f ′ 0 k (t) + 

1 

2 

ν2 (1 − ̂ ρ2 ) f 2 0 k (t) − ( ̂  ραν + K) f 0 k (t) 

+ 

f k (t) − f 0 k (t) 

ζ
η − α2 

2 

] 
l. (4.20) 

e can divide (4.20) into the following two differential equa-

ions: 

 

′ 
0 k (t) − g 0 k (t) 

ζ
η + 

[ 
(d k − ω k d j ) − (δ(q ∗k (t)) − ω k δ(q ∗j (t))) 

−(q ∗k (t) n k − ω k q 
∗
j (t) n j ) 

] 
×(−m k e 

r(T −t) ) 

+ 

1 

2 

[ 
σ 2 

k q 
∗2 
k (t) + ω 

2 
k σ

2 
j q 

∗2 
j (t) − 2 ρω k σk σ j q 

∗
k (t) q ∗j (t) 

] 
m 

2 
k e 

2 r(T −t) 

+ Kβ f 0 k (t) − η

ζ
ln 

1 

�
+ h 

P 
(

1 

�
− 1 

)
+ 

g k (t) 

ζ
η = 0 , (4.21) 

f ′ 0 k (t) + 

1 

2 

ν2 (1 − ̂ ρ2 ) f 2 0 k (t) −
(̂ ραν + K + 

η

ζ

)
f 0 k (t) 

+ 

η

ζ
f k (t) − α2 

2 

= 0 , (4.22) 

ith the boundary condition g 0 k (T ) = f 0 k (T ) = 0 . 

Let G k (t) = g 0 k (t) − g k (t) , k = 1 , 2 , and G k ( t ) is differentiated

.r.t. t , we obtain: 

 

′ 
k (t) = g ′ 0 k (t) − g ′ k (t) = 

η

ζ
G k (t) + 

η

ζ
ln 

1 

�
− h 

P 
(

1 

�
− 1 

)
. (4.23) 

ecause G k (T ) = g 0 k (T ) − g k (T ) = 0 , we have 

 k (t) = ( ln 

1 

�
+ � − 1) e −

η
ζ
(T −t) − ln 

1 

�
− � + 1 . (4.24)

pplying Lemma 3.1 and Corollary 3.1 reported by Zhu et al. (2015) ,

e can solve the nonlinear Riccati differential Eq. (4.22) , whose

olution is f 0 k (t) = f k (t) , as presented in (4.8) . �

Combining Theorems 4.1 and 4.2 , we obtain the following result

irectly. 

heorem 4.3. Given the CARA preferences, the value functions for in-

urer k = 1 , 2 , are given by 

 k (t, ̂  z k , l, h ) = − 1 

m k 

exp {−m k ̂  z k e 
r(T −t) + g k (t) 

+ G (t)(1 − h ) + f (t) l} , (4.25) 
k k 
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Table 1 

Insurer k ’s equilibrium reinsurance strategy q ∗
k 
(t) . 

∂ q ∗
k 
(t) /∂ ω k ∂ q ∗

k 
(t) /∂ ω j ∂ q ∗

k 
(t) /∂ μk ∂ q ∗

k 
(t) /∂ μ j ∂ q ∗

k 
(t) /∂ σk ∂ q ∗

k 
(t) /∂ σ j 

+ + + + − −

m  

s  

p  

r  

2  

m  

p  

t  

t  

i  

s  

p  

b  

t  

t  

t  

l  

c  

s  

a  

g  

(

C  

π
 

a  

q̂  

i  

r

 

h  

b  

0  

θ
 

c  

1  

p  

w  

o

P  

 

1  

t  

e  

s  

a

 

F  

 

where g k ( t ), f k ( t ) and G k ( t ) are given in (4.7) , (4.8) , and (4.24) , re-

spectively. The optimal reinsurance-investment strategy for each in-

surers are triple process π ∗
k 
(t) = (q ∗

k 
(t ) , θ ∗

k 
(t ) , γ ∗

k 
(t )) , where θ ∗

k 
(t)

and q ∗
k 
(t) are given in (4.2) and (4.4) , and the equilibrium investment

strategy γ ∗
k 
(t) is 

γ ∗
k (t) = 

⎧ ⎨ ⎩ 

̂ γ ∗
k 
(t ) + ω k ̂  γ ∗

j 
(t ) 

1 − ω k ω j 

, f or t ∈ [0 , τ ∧ T ) , 

0 , f or t ∈ [ τ ∧ T , T ] . 

(4.26)

Remark 4.1. Note that the HJB Eq. (4.13) that is associated with the

pre-default value function J k (t, ̂  z k , l, 0) also depends on the post-

default value function J k (t, ̂  z k , l, 1) . 

Remark 4.2. Regardless of whether the corporate bond defaults,

the equilibrium reinsurance strategy q ∗
k 
(t) and the equilibrium in-

vestment strategy θ ∗
k 
(t) do not change. In other words, the insurer

moves the recovered value from the default bond into the risk-free

asset after the default of the ZCB. 3 This is due to the setting that

either the surplus process of each insurer or the stock price pro-

cess is uncorrelated with the corporate bond’s price process. More-

over, under the CARA utility each insurer is optimal to invest in the

defaultable bond if the risk premium 

1 
� > 0 . As a result, the post-

default value function J k (t, ̂  z k , l, 1) is smaller than the pre-default

value function J k (t, ̂  z k , l, 0) , and the (e G k (t) − 1) J k (t, ̂  z k , l, 1) is the

additional income due to the investment in the defaultable bond. 

Remark 4.3. When ω 1 = ω 2 = 0 , the equilibrium strategy π ∗
k 
(t) =

(q ∗
k 
(t) , θ ∗

k 
(t) , γ ∗

k 
(t)) is reduced to the regular strategy ̂ π ∗

k 
(t) =

( ̂  q ∗
k 
(t) , ̂  θ ∗

k 
(t) , ̂  γ ∗

k 
(t)) , which is optimal for the case without the rel-

ative performance concern. 

Corollary 4.1. (Best response to competition) If ω 2 = 0 and ω 1 > 0

(i.e., insurer 1 faces no competition from insurer 2), then the Nash

equilibrium reinsurance-investment strategies are given as follow: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

q ∗1 (t) = 

(̂ q ∗1 (t) + b 1 (t ) ̂  q ∗2 (t ) 
)
∧ 1 , f or t ∈ [0 , T ] ,

q ∗2 (t) = ̂

 q ∗2 (t) , f or t ∈ [0 , T ] ,

θ ∗
1 (t) = ̂

 θ ∗
1 (t) + ω 1 ̂

 θ ∗
2 (t) , f or t ∈ [0 , T ] ,

θ ∗
2 (t) = ̂

 θ ∗
2 (t) , f or t ∈ [0 , T ] ,

γ ∗
1 (t) = 

{̂ γ ∗
1 (t) + ω 1 ̂  γ ∗

2 (t) , f or t ∈ [0 , τ ∧ T ] , 

0 , f or t ∈ [ τ ∧ T , T ] 

γ ∗
2 (t) = 

{̂ γ ∗
2 (t) , f or t ∈ [0 , τ ∧ T ] , 

0 , f or t ∈ [ τ ∧ T , T ] . 

(4.27)

Corollary 4.1 shows that insurer 2’s equilibrium reinsurance-

investment strategy π ∗
2 (t) = (q ∗2 (t ) , θ ∗

2 (t ) , γ ∗
2 (t )) is consistent with

the regular strategy ̂ π ∗
2 
(t) = ( ̂  q ∗

2 
(t ) , ̂  θ ∗

2 
(t ) , ̂  γ ∗

2 
(t )) , whereas insurer

1’s equilibrium reinsurance-investment strategy π ∗
1 
(t) can be divided

into two parts. The first part is the regular strategy ̂ π ∗
1 (t) , which is

likely due to the partial objective of maximizing the terminal wealth;

the second part ( b 1 (t) q ∗
2 
(t) , ω 1 ̂

 θ ∗
2 
(t) , ω 1 ̂  γ ∗

2 
(t) ) is induced by the

relative performance concern. Specifically, the presence of the relative

concern affects insurer 1’s reinsurance decision and results in a riskier

reinsurance policy. 

Insurer 1’s regular reinsurance strategy ̂ q ∗1 (t) = 

2�
m 1 e 

−r(T−t) +2�
de-

creases in the risk aversion parameter m 1 , or 1 − ̂ q ∗1 (t) increases in
3 We thank an anonymous referee for pointing out this. In Bielecki and Jang 

(2006) , the optimal investment strategy also does not change before or after the 

default of the defaultable bond. 

u

u  
 1 . This indicates that a more risk averse insurer will buy more rein-

urance contracts. By contrast, in a competitive environment, the com-

etitive coefficient b 1 ( t ) increases in m 1 . As a result, the equilibrium

einsurance strategy q ∗
1 
(t) may increase in m 1 , depending on insurer

’s regular reinsurance policy ̂ q ∗
2 
(t) . Thus, a more risk averse insurer

ay buy less reinsurance contracts in the presence of competition. In

articular, q ∗
1 
(t) = 

ρω 1 σ2 
σ1 

̂ q ∗
2 
(t) ∧ 1 > 0 as m 1 ↑ + ∞ , that is, an ex-

reme risk averse insurer may still exposure to the claim risk. In addi-

ion, in this special case, insurer 1’s equilibrium reinsurance strategy

s simply to mimic the optimal strategy ̂ q ∗
2 
(t) that is followed by in-

urer 2; this reinsurance strategy decreases in insurer 2’s risk aversion

arameter m 2 . These new features of the equilibrium strategies should

e induced by the effect of the relative performance concerns that dis-

ort the rational reinsurance decisions of the insurers. This point is fur-

her affirmed after we observe that the equilibrium strategies are ac-

ually riskier than the regular strategies. The extra terms in the equi-

ibrium strategies of insurer 1 demonstrate insurer 1’s response to the

ompetition: to outperform insurer 2, it takes more aggressive rein-

urance and investment strategies. Next, we will perform a detailed

nalysis of the equilibrium reinsurance-investment strategy in a more

eneral case of competition when both insurers have relative concerns

 ω k > 0 , k = 1 , 2 ). 

orollary 4.2. If ω k > 0 , k = 1 , 2 , the Nash equilibrium strategy
∗
k 
(t) = (q ∗

k 
(t ) , θ ∗

k 
(t ) , γ ∗

k 
(t )) has the following properties: 

(I) Insurer k increases its equilibrium proportional reinsur-

nce strategy q ∗
k 
(t) relative to the regular reinsurance strategy

 

 

∗
k 
(t)(i.e., ω k = 0 , k = 1 , 2) without competition. The sensitivities of

nsurer k’s equilibrium reinsurance strategy with respect to the pa-

ameters are given in Table 1 . 

(II) If the equity premium is strictly positive, then insurer k will

old a positive position of the stock, and the investment( θ ∗
k 
(t) ) will

e larger relative to the regular strategy without competition ( ω k =
 , k = 1 , 2 ). The sensitivities of the equilibrium investment strategy
∗
k 
(t) are summarized in Table 2 . 

(III) Each insurer will choose to increase their investment in the

orporate bond relative to the case of no competition (ω k = 0 , k =
 , 2) , and each insurer will always hold a positive position of the cor-

orate bond with a positive risk premium (i.e., γ ∗
k 
(t) > 0 , if 1 

�
> 1 );

hereas γ ∗
k 
(t) = 0 and J k (t, ̂  z k , l, 1) = J k (t, ̂  z k , l, 0) if 1 

� = 1 . More-

ver, we have the following sensitivity analyses in Table 3 . 

roof. (I). From Theorems 4.1 and 4.2 , we know that q ∗
k 
(t) =

b k (t) ̂  q ∗
j 
(t)+ ̂  q ∗

k 
(t) 

1 −b 1 (t) b 2 (t) 
∧ 1 for k 
 = j ∈ {1, 2}. Because ̂  q ∗

k 
(t) > 0 , b k (t) > 0 , and

 > 1 − b 1 (t) b 2 (t) > 0 , we have q ∗
k 
(t) ≥ ̂ q ∗

k 
(t) . This step implies

hat the insurer purchases fewer reinsurance contracts. We can

asily derive the relationship between the equilibrium reinsurance

trategy and model parameters; and the details of this procedure

re omitted here. 

(II). To prepare for proof (II), we need to verify that f k ( t ) ≤ 0.

rom the definition of f k in Theorems 4.1 and 4.2 , we can derive

f k (t) ≤ f k (T ) = 0 straightforwardly. 

Let u = ˆ ρν f k (t) . Using Eq. (4.22) , we can show that the function

 satisfies the following equation: 

 

′ + 

ν

2 ̂  ρ
(1 − ˆ ρ2 ) u 

2 − ( ̂  ραν + K) u − α2 ν ˆ ρ

2 

= 0 , (4.28)



C. Deng et al. / European Journal of Operational Research 264 (2018) 1144–1158 1151 

Table 2 

Insurer k ’s equilibrium investment strategy θ ∗
k 
(t) . 

∂ θ ∗
k 
(t) /∂ ω k ∂ θ ∗

k 
(t) /∂ ω j ∂ θ ∗

k 
(t) /∂ m k ∂ θ ∗

k 
(t) /∂ m j ∂ θ ∗

k 
(t) /∂ ̂  ρ ∂ θ ∗

k 
(t) /∂ K ∂ θ ∗

k 
(t) /∂ α

+ + − − − + ( ̂  ρ > 0) − ( ̂  ρ < 0) + 

Table 3 

Insurer k ’s equilibrium investment strategy γ ∗
k 
(t) . 

∂ γ ∗
k 
(t) /∂ ω k ∂ γ ∗

k 
(t) /∂ ω j ∂γ ∗

k 
(t) /∂ 1 

� ∂ γ ∗
k 
(t) /∂ ζ ∂ γ ∗

k 
(t) /∂ m k ∂ γ ∗

k 
(t) /∂ m j 

+ + + − − −

w  

t

−

L(
T

w  

 

t  

ρ  

l

l

F

l

θ

B  

r  

T

(

(

(

 

f

w(

T  

a

f  

i  

c

u

D  

f(
w

B  

∂  

a

 

0  

b

 

γ

γ

I  

s

 

e  

p

 

r  

p  

1

 

a  

o  

a  

a  

o  

r  

t  

ω  

p  

s  

r

i

 

here u ′ = ∂ u/∂ t . Differentiating Eq. (4.28) w.r.t. to ˆ ρ, we obtain

he following equation for the derivative u ˆ ρ of u w.r.t. to ˆ ρ: 

∂u 

′ 
∂ ˆ ρ

− ν

2 

( 
1 

ˆ ρ2 
+ 1) u 

2 + 

ν

ˆ ρ
(1 − ˆ ρ2 ) u 

∂u 

∂ ˆ ρ
− ( ̂  ραν + K) 

∂u 

∂ ˆ ρ

ανu − α2 ν

2 

= 0 . (4.29) 

et K = 

ν
ˆ ρ
(1 − ˆ ρ2 ) u − ( ̂  ραν + K) ; then, we can rewrite (4.29) as 

∂u 

∂ ˆ ρ

)
′ + K 

∂u 

∂ ˆ ρ
− ν

2 

u 

2 − ν

2 

(u + α) 2 = 0 . 

he solution to this ordinary equation is given by 

∂u 

∂ ˆ ρ
= −e 

∫ T 
t Kds 

∫ T 

t 

e −
∫ T 

s Kdv 
[ 
ν

2 

u 

2 + 

ν

2 

(u + α) 2 
] 

ds < 0 , 

hich indicates that u decreases as ˆ ρ increases. Because ̂ θ ∗
k 
(t) =

(α+ ̂ ρν f k (t)) 
m k 

e −r(T −t) = 

(α+ u ( ̂ ρ)) 
m k 

e −r(T −t) , ̂ θ ∗
k 
(t) is a decreasing func-

ion of ˆ ρ . Additionally, we can consider ̂ θ ∗
k 
(t) to be a function of

ˆ , and for a fixed t , ̂ θ ∗
k 
(t; ˆ ρ) := ̂

 θ ∗
k 
(t ) . Then, ̂ θ ∗

k 
(t ; ˆ ρ) ≥ ̂ θ ∗

k 
(t; 1 −) =

im ˆ ρ↑ 1 (α+ u ) 
m k 

e −r(T −t) and: 

im 

ˆ ρ↑ 1 
(α + u ) 

m k 

e −r(T −t) = 

1 

m k 

(α + lim 

ˆ ρ↑ 1 
ν f k (t)) e −r(T −t) . 

rom (4.8) , we have lim ˆ ρ↑ 1 ν f k (t) = 0 . Then, ̂ θ ∗
k 
(t; ˆ ρ) ≥

im ˆ ρ↑ 1 ̂  θ ∗
k 
(t; 1 −) = 

α
m k 

e −r(T −t) > 0 . 

For ˆ ρ = 1 , 

̂ 

∗
k (t; ˆ ρ) 

∣∣∣
ˆ ρ=1 

= 

1 

m k 

α
(

1 − αν

2(K + να) 
+ 

αν

2(K + να) 
e −(K+ να)(T −t) 

)
= 

1 

m k 

α
(

2 K + αν

2(K + να) 
+ 

αν

2(K + να) 
e −(K+ να)(T −t) 

)
. 

ecause K > 0 , α > 0 and ν > 0, ̂ θ ∗
k 
(t; ˆ ρ) 

∣∣∣
ˆ ρ=1 

> 0 . Based on these

esults, we can conclude that ̂ θ ∗
k 
(t; ˆ ρ) := ̂

 θ ∗
k 
(t) > 0 for ∀ t ∈ [0, T ].

he following results are then true: 

1) θ ∗
k 
(t) = 

ω k ̂
 θ∗
j 
(t)+ ̂  θ∗

k 
(t) 

1 −ω 1 ω 2 
≥ ̂ θ ∗

k 
(t) ; 

2) 
∂θ∗

k 
(t) 

∂m k 
< 0 and 

∂θ∗
k 
(t) 

∂m j 
< 0 ; 

3) 
∂θ∗

k 
(t) 

∂ω k 
> 0 and 

∂θ∗
k 
(t) 

∂ω j 
> 0 . 

Differentiating Eq. (4.28) with respect to K, we can obtain the

ollowing equation for the derivative u K of u w.r.t. K: 

∂u 

′ 
∂K 

+ 

ν

ˆ ρ
(1 − ˆ ρ2 ) u 

∂u 

∂K 

− ( ̂  ραν + K) 
∂u 

∂K 

− u = 0 , 

hich is equivalent to 

∂u 

∂K 

)
′ + Ku K − u = 0 . 
a  
hen, we can derive the solution to the above ordinary equation

s 

∂u 

∂K 

= −e 
∫ T 

t Kds 

∫ T 

t 

e −
∫ T 

s Kdv uds, 

or ˆ ρ > 0 , u K > 0 , and u K < 0 if ˆ ρ < 0 . Therefore, the equilibrium

nvestment strategy θ ∗
k 
(t) increases as K increases if ˆ ρ > 0 and de-

reases as K increases if ˆ ρ < 0 . 

Let u = α + ˆ ρν f k (t) ; then, we obtain: 

 

′ + 

ν

2 ̂  ρ
(1 − ˆ ρ2 )(u 

2 −2 αu + α2 ) − ( ̂  ρνα + K)(u − α) − α2 ˆ ρν

2 

= 0 . 

(4.30) 

ifferentiating Eq. (4.30) w.r.t. α, we obtain the following equation

or the derivation u α of u w.r.t. α: 

∂u 

∂α

)
′ − ν

ˆ ρ
(1 − ˆ ρ2 ) u + 

ν

ˆ ρ
α + K = 0 , 

here ˆ K = 

ν
ˆ ρ
(1 − ˆ ρ2 ) u − ( ν

ˆ ρ
α + K) . Thus, 

∂u 

∂α
= −e 

∫ T 
t 

ˆ K ds 

∫ T 

t 

e −
∫ T 

s 
ˆ K dv 

(
− ν

ˆ ρ
(u − α) + K 

)
ds. 

ecause − ν
ˆ ρ
(u − α) = − ν

ˆ ρ
ν ˆ ρ f k (t) = −ν2 f k (t) > 0 , we have

 u / ∂ α > 0. Consequently, we can easily derive that ∂ θ ∗
k 
(t) /∂ α > 0

nd θ ∗
k 
(t) > 0 if α > 0. 

(III) First, if 1 
� = 

h Q 

h P 
= 1 , then the optimal result is ˆ γ ∗

k 
(t) =

 , k = 1 , 2 . Thus, the equilibrium investment strategy is described

y γ ∗
k 
(t) = 

ω k ̂ γ
∗
j 
(t)+ ̂ γ ∗

k 
(t) 

1 −ω k ω j 
= 0 . 

Similarly, when 

1 
� = 

h Q 

h P 
> 1 , the regular investment strategy

ˆ ∗
k 
(t) is described by 

ˆ ∗k (t) = 

ln 

1 
� e −

δ
ζ
(T −t) + (1 − e −

δ
ζ
(T −t) )(1 − �) 

m k ζ
e −r(T −t) . 

t is shown that ˆ γ ∗
k 
(t) > 0 , and thus the equilibrium investment

trategy is described by γ ∗
k 
(t) > 0 . 

Using the above results, we can prove the monotone prop-

rty between the equilibrium investment strategy and model

arameters. �

Corollary 4.2 provides an explicit characterization of the equilib-

ium reinsurance-investment strategy in the general case of com-

etition when both insurers have relative concerns ( ω k > 0 , k =
 , 2 ). 

First, as in Corollary 4.2 (I), insurer k ’s equilibrium reinsur-

nce strategy q ∗
k 
(t) is also larger than the regular strategy with-

ut competition; this finding agrees with Corollary 4.1 . Addition-

lly, Table 1 shows that q ∗
k 
(t) increases as ω k or ω m 

increase; thus,

 larger ω k implies that insurer k will consider the performance

f its opponent more. Therefore, each insurer tends to increase the

einsurance strategy q ∗
k 

and takes a riskier decision to maximize

he difference between their terminal wealth. Similarly, a larger

 m 

indicates that insurer k faces stronger competition from its op-

onent(i.e., insurer m ); it is shown that increasing the reinsurance

trategy q ∗
k 

is the best response to competition. The equilibrium

einsurance strategy also decreases as the volatility parameter σ k 

ncreases. 

Second, although the equilibrium investment strategy θ ∗
k 
(t) has

 complex form, we provide the following properties for θ ∗
k 
(t) with
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a rigorous proof, which is not provided in the existings literature.

First, Corollary 4.2 (II) shows a notable result that each insurer’s

stock holding is always positive if the stock risk premium is pos-

itive, and the holding decreases as the risk aversion of each in-

surer increases; this result is different from that of Liu (2007) ,

in which a CRRA investor is assumed and this monotonicity does

not form completely. The equilibrium investment strategy also in-

creases as the competition parameters ω k , k = 1 , 2 , increase. Then,

as in Corollary 4.1 , each insurer will assume a more aggressive in-

vestment strategy in a more general setting. Finally, we obtain the

relationship between θ ∗
k 
(t) and the various stock price model pa-

rameters in Table 2 . 

Corollary 4.2 (III) shows that insurers will also hold a positive

amount of the corporate bonds when the risk premium is positive;

the holdings decrease as the risk aversion parameter m k increases.

Each insurer also takes a more aggressive investment decision in

this general case, and buys more corporate bonds when ω k or ω m 

is larger. Table 3 describes the dependence of the equilibrium in-

vestment policy γ ∗
k 
(t) on the other parameters. 

The following result demonstrates the relationship between the

pre- and the post-default equilibrium value functions. 

Corollary 4.3. (i) For k ∈ {1, 2} and h ∈ {0, 1}, the equilibrium value

function J k (t, ̂  z k , l, h ) increases as ̂  z k and l increase. 

(ii) The pre-default equilibrium value function J k (t, ̂  z k , l, 0) is

always greater than the post-default equilibrium value function

J k (t, ̂  z k , l, 1) . 

Proof. From the expression of J k (t, ̂  z k , l, h ) in Theorem 4.3 , we can

obtain these results. A detailed proof is omitted. �

Remark 4.4. Since ̂ z k = z k − ω k z j , the equilibrium value function

J k (t, ̂  z k , l, h ) decreases in ω k or z j , and increases in z k . It implies

that the competition will reduce insurers’ utilities, and the more

wealth insurer j has, the lower utility insurer k ( 
 = j ) achieves. In

addition, the value function is concave with respect to the relative

wealth. 

4.3. Verification theorem 

In the dynamic programming approach, a verification lemma is

necessary to guarantee that a solution to the HJB equation coin-

cides with the value function. We should verify that the smooth

candidate solution derived in the previous section is indeed the

value function of this optimization problem. Zeng and Taksar

(2013) assume the value function be a concavity function (every

convex function is locally Lipschitz), and provide a verification re-

sult for a dynamic portfolio optimization problem with a Heston

model corresponding to the CRRA utility cases. In a similar case

(locally Lipschitz), we apply Zeng and Taksar ′ s result (Lemma A.2)

and derive the verification theorem for a reinsurance-investment

optimization problem with a Heston model corresponding to the

CARA utility cases. 

Theorem 4.4. [Verification theorem]For k = 1 , 2 , let F k be a concave

solution to HJB Eq. (4.1) and an integrable function at every stopping-

time τ i ∈ [0, T ] ; additionally, let π ∗
k 

be described in Theorem 4.3 . Then,

π ∗
k 

is an optimal control for problem (3.7) , and F k is the corresponding

value function. 

Proof. Let M = R × R 

+ × { 0 , 1 } . Take a sequence of bounded

open sets M 1 , M 2 , M 3 , . . . , with M i ⊂ M i +1 ⊂ M , i = 1 , 2 , . . . ,

and M = ∪ i M i . For ( ̂  z k , l, h ) ∈ M 1 , let τ i be the exit time of

( ̂  Z 
πk 

k 
(t) , L (t) , H(t)) from M i . Then, τ i ∧ T → T , a.s., as i → ∞ . 
Applying Itô’s lemma to F k yields 

 

k (τi ∧ T , ̂  Z 
πk 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) 

= F k (t, ̂  z k , l, h ) + 

∫ τi ∧ T 

t 

L 

πk 

k 
F k (s, ̂  Z 

πk 

k 
(s ) , L (s ) , H(s )) ds 

+ 

∫ τi ∧ T 

t 

σk q 
∗
k (s ) 

∂F k 

∂ ̂  z k 
dB k (s ) −

∫ τi ∧ T 

t 

ω k σ j q 
∗
j (s ) 

∂F k 

∂ ̂  z k 
dB j (s ) 

+ 

∫ τi ∧ T 

t 

(θ ∗
k (s ) − ω k θ

∗
j (s )) F k l 

√ 

L (s ) dW 1 (s ) 

+ 

∫ τi ∧ T 

t 

(
F k (s, ̂  Z 

πk 

k 
(s ) − (γ ∗

k (s ) − ω k γ
∗
j (s )) ζ̂ Z 

πk 

k 
(s ) , L (s ) , 1) 

−F k (s, ̂  Z 
πk 

k 
(s ) , L (s ) , 0) 

)
dM 

P (s ) . 

ecause the last three terms are square-integrable martingales

ith zero expectations, taking conditional expectations given

(t, ̂  z , l, h ) on both sides of the above equation and taking (4.1) into

onsideration yields: 

 

[ 
F k (τi ∧ T , ̂  Z 

πk 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) | ̂  Z 

πk 

k 
(t) 

= ̂

 z k , L (t) = l, H(t) = h 

] 
= F k (t, ̂  z k , l, h ) + E 

[ ∫ τi ∧ T 

t 

L 

πk 

k 
F k (s, ̂  Z 

πk 

k 
(s ) , L (s ) , H(s )) ds | ̂  Z 

πk 

k 
(t) 

= ̂

 z k , L (t) = l, H(t) = h 

] 
≤ F k (t, ̂  z k , l, h ) . 

ue to Lemma 4.1 , F k (τi ∧ T , ̂  Z 
πk 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) , i =

 , 2 , . . . , are uniformly integrable. Thus, we have 

 k (t, ̂  z k , l, h ) = sup 

πk ∈ �k 

E[ U k ( ̂  Z 
πk 

k 
(T )) | ̂  Z 

πk 

k 
(t) = ̂

 z k , L (t) = l, H(t) = h ] 

= lim 

i →∞ 

E 

[ 
J k (τi ∧ T , ̂  Z 

πk 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) | 

×̂ Z 
πk 

k 
(t) = ̂

 z k , L (t) = l, H(t) = h 

] 
≤ F k (t, ̂  z k , l, h ) . 

hen πk = π ∗
k 
, the inequality in the above formula becomes an

quality, and thus J k (t, ̂  z k , l, h ) = F k (t, ̂  z k , l, h ) . Then, the proof is

omplete. �

Theorem 4.3 guarantees the optimality of the solution to the

JB Eq. (4.1) and prescribes the equilibrium strategy π ∗
k 
(t) , k =

 , 2 , for each insurer. However, we must check that the candidate

olution F k satisfies the conditions required in Theorem 4.4 . First,

t is easy to show that F k is a concave solution to HJB Eq. (4.1) .

herefore, we need to verify that the uniform integrability con-

ition holds. The proof of this fact nearly follows the study per-

ormed by Zeng and Taksar (2013) . More precisely, we apply the

ollowing lemma as performed by Zeng and Taksar (2013) . 

emma 4.1. For k = 1 , 2 , let τ i be the existing time from the open

et M i , where M i ⊂ M = R × R 

+ × { 0 , 1 } such that M i ⊂ M i +1 ⊂
 , i = 1 , 2 , . . . , and M = ∪ i M i . Then, for any ε > 1, we have 

up 

i 

E 

[ 
| J k (τi ∧ T , ̂  Z 

π ∗
k 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) | ε 

] 
< ∞ . 

 = 1 , 2 , . . . . (4.31)

roof. See the Appendix. �
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Table 4 

Model parameter values. 

Insurer 1’s parameters Insurer 2’s parameters 

Symbol Value Symbol Value 

μ1 0.9 μ2 1 

σ 1 2 σ 2 1.5 

m 1 1 m 2 2 

ω 1 0.2 ω 2 0.4 

Base parameters 

Symbol Value Symbol Value 

r 0.05 ν 1 

� 2 α 2 

T 4 K 3 

� 0.5 ̂ ρ 0.5 

ζ 0.2 λ 1 

Fig. 1. Effect of 1 
� on the equilibrium strategy γ ∗

1 (0) . 
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Fig. 2. Effect of 1 
� on the equilibrium strategy γ ∗

2 (0) . 

Fig. 3. Effect of ζ on the equilibrium strategy γ ∗
1 (0) . 
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a  
. Sensitivity analysis 

To illustrate the sensitivities of the equilibrium strategies

ith respect to the model parameters, we conduct numerical

xperiments in this section. Throughout this section, we use the

ollowing model parameter values (See Table 4 ): 

.1. Equilibrium investment strategy on the corporate bond 

We now analyze the sensitivity of the equilibrium strategies
∗

k 
(0) with respect to the default risk premium 

1 
� and the loss

ate ζ by varying the parameters within reasonable intervals. 

Figs. 1 and 2 show a positive correlation between the equilib-

ium strategies γ ∗
k 
(0) and the default risk premium. We note that

he slopes of the curves decrease as the default risk premiums in-

rease. Figs. 3 and 4 demonstrate the negative relationship between

he equilibrium strategies γ ∗
k 
(0) and the loss rate ζ . These results

re all consistent with Corollary 4.3 . First, it is intuitive that an in-

urer would invest more wealth in a corporate bond with a higher

efault risk premium; it is also important that the insurer’s invest-

ent in a corporate bond is zero when its risk premium is zero.

econd, we note that a larger loss rate ζ produces a lower recov-

ry amount; this implies that the potential loss of the insurer be-

omes larger at a higher loss rate. As in Figs. 3 and 4 , insurer k
educes their amount of investment in the corporate bond as the

oss rate increases. 

To illustrate the effect of competition, Figs. 5 and 6 demon-

trate how the equilibrium investment in the corporate bond varies

ith insurer k ’s relative performance parameter ω k for k = 1 , 2 . In

igs. 5 and 6 , the equilibrium investment strategy γ k (0) increases

s ω k or ω m 

increases. As shown by ω k (i.e., the competition

ntensity faced by its competitor), a larger ω k produces a riskier

nvestment strategy (i.e., investing more in the corporate bond) as

 response to the competition. In this case, the insurer can maxi-

ize the probability of generating greater terminal wealth against

ts competitor at the terminal time T . The effects of the competi-

ion are also illustrated in Figs. 1 –4 . 

.2. Equilibrium reinsurance strategy 

Figs. 7 and 8 show that the equilibrium proportional reinsur-

nce strategy q ∗
k 
(0) of insurer k decreases as σ k increases when
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Fig. 4. Effect of ζ on the equilibrium strategy γ ∗
2 (0) . 

Fig. 5. Effect of competition on the equilibrium investment strategy γ ∗
1 (0) . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effect of com petition on the equilibrium investment strategy γ ∗
1 (0) . invest- 

ment strategy γ ∗
2 (0) . 

Fig. 7. Effect of σ 1 on the the equilibrium strategy q ∗1 (0) . 
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ρ
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β  

s  

ρ
i  
ω k > 0; additionally, the proportional reinsurance strategy q ∗
k 
(0)

is a constant when ω k = 0 . These results are consistent with

Theorem 4.1 and 4.2 . When ω k = 0 , the reinsurance strategy is con-

sistent with that without competition in the existing literature. 

From Figs. 9 and 10 , we observe a positive relationship between

ω k and insurer k ’s equilibrium proportional reinsurance strategy.

Note that a larger ω k indicates more concerns of insurer k about

its relative performance. Insurer k may bear more risk due to the

claims of purchasing fewer reinsurance contracts, while obtaining

a higher terminal wealth and thus a higher probability of beating

its competitor. 

5.3. Equilibrium investment strategy 

Figs. 11 –18 describe the sensitivity of the equilibrium invest-

ment strategy versus the model parameters. In Figs. 11 and 12 , we
nalyze the effect of the correlation coefficient ̂ ρ on the equilib-

ium investment strategy; and see that the equilibrium investment

trategy on the stock decreases as ̂ ρ increases; insurer k tends to

ecrease their investment in the stock as the correlation coefficient̂ increases. This agrees with economic intuition. 

Figs. 13 –16 provide graphical illustrations of the effect of K on

he equilibrium investment strategy θ ∗
k 
(0) . We observe that the

quilibrium investment strategy increases as K increases for ̂ ρ > 0 ,

hereas the strategy decreases as K increases for ̂ ρ < 0 . K denotes

he mean reversion rate of L ( t ) (i.e., the stock volatility); thus, a

arger K will cause L ( t ) to revert more quickly back to its mean

. This should lead to a more stable return of the stock. As a re-

ult, insurer k will tend to increase its investment in the stock. For̂ < 0 , changes in L ( t ) and S ( t ) move in opposite directions. If K
ncreases, the hedging effect of L ( t ) should weaken; thus, insurer k
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Fig. 8. Effect of σ 2 on the the equilibrium strategy q ∗2 (0) . 

Fig. 9. Effect of competition on the equilibrium reinsurance strategy q ∗1 (0) . 
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Fig. 10. Effect of competition on the equilibrium reinsurance strategy q ∗2 (0) . 

Fig. 11. Effect of ̂ ρ on the the equilibrium strategy θ ∗
1 (0) . 
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ill reduce its investment when 

̂ ρ < 0 . The effect of competition is

emonstrated in Figs. 17 and 18 . Insurer k will invest more in the

tock as the dependence parameter ω k increases; this is consistent

ith the analysis of the equilibrium investment strategy θ ∗
k 
(t) in

orollary 4.2 . It is optimal for each insurer to choose a riskier in-

estment strategy θ ∗
k 
(t) and hold more stock shares. 

. Conclusion 

Motivated by Bensoussan et al. (2014) and Espinosa and Touzi

2015) , we study stochastic differential games between two com-

etitive insurance companies in the presence of strategic interac-

ions driven by relative performance concerns. 

We assume that the reinsurance premium is calculated by the

ariance premium principle and that each insurer can dynamically

urchase reinsurance contracts and invest its wealth in a financial
arket that consists of a risk-free asset, a risky asset with stochas-

ic volatility and a defaultable corporate bond. The goal of each

nsurer is to maximize its CARA utility from its terminal wealth

ith relative performance concerns. The optimal decision problem

s modelled as a non-zero-sum game. We obtain the Nash equi-

ibrium strategies for the game by solving the corresponding HJB

quations. We find that relative concerns distort insurers’ rational

ecisions, in that each insurer decreases their purchase of rein-

urance contracts and holds more risky assets (i.e., stock and de-

aultable corporate bond) in the presence of competition. Finally,

e establish a verification theorem for the optimality of the given

ontrol policies. Numerical examples are provided to illustrate the

ffects of the model parameters and the relative concerns on the

quilibrium strategies. 
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Fig. 12. Effect of ̂ ρ on the the equilibrium strategy θ ∗
2 (0) . 

Fig. 13. Effect of K on the the equilibrium strategy θ ∗
1 (0) , when ̂ ρ = −0 . 5 . 

Fig. 14. Effect of K on the the equilibrium strategy θ ∗
2 (0) , when ̂ ρ = −0 . 5 . 

Fig. 15. Effect of K on the the equilibrium strategy θ ∗
1 (0) , when ̂ ρ = 0 . 5 . 

Fig. 16. Effect of K on the the equilibrium strategy θ ∗
2 (0) , when ̂ ρ = 0 . 5 . 

Fig. 17. Effect of competition on the equilibrium investment strategy θ ∗
1 (0) . 
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Fig. 18. Effect of competition on the equilibrium investment strategy θ ∗
2 (0) . 
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ppendix A. Proof of Lemma 4.1 

roof. Note that 

 k (t, ̂  Z 
π ∗

k 

k 
(t) , L (t) , H(t)) = (1 − H(t )) J k (t , ̂  Z 

π ∗
k 

k 
(t ) , L (t ) , 0) 

+ H(t) J k (t, ̂  Z 
π ∗

k 

k 
(t) , L (t) , 1) . 

or 0 ≤ H ( t ) ≤ 1, we only need to verify that sup i E[ | J k (τi ∧
 , ̂  Z 

π∗
k 

k 
(τi ∧ T ) , L (τi ∧ T ) , j) | ε ] < ∞ , j = 0 , 1 . 

(1) Case of H(t) = 0 . Using Eq. (3.6) , we obtain 

 k (t, ̂  Z 
π ∗

k 

k 
(t) , L (t) , 0) = − 1 

m k 

exp {−m k ̂
 Z 
π ∗

k 

k 
(t) e r(T −t) + g 0 k (t) 

+ f 0 k (t) L (t) } = − 1 

m k 

exp 

{ 

−m k ̂  z k e 
r(T − m k 

∫ t 

0 

e r(T −s ) 

×
[ 
(d k −ω k d j ) −(δ(q ∗k (s )) −ω k δ(q ∗j (s ))) −(q ∗k (s ) n k −ω k q 

∗
j (s ) n j ) 

+(θ ∗
k (s ) − ω k θ

∗
j (s )) αL (s ) + (γ ∗

k (s ) − ω k γ
∗
j (s )) η(1 − �) 

] 
ds 

−m k ̂  ρ

∫ t 

0 

e r(T −s ) (θ ∗
k (s ) − ω k θ

∗
j (s )) 

√ 

L (s ) dW 2 (s ) 

−m k 

∫ t 

0 

e r(T −s ) 
√ 

1 − ̂ ρ2 (θ ∗
k (s ) − ω k θ

∗
j (s )) 

√ 

L (s ) d W (s ) 

−m 

2 
k 
(1 − ̂ ρ2 ) 

2 

∫ t 

0 

e 2 r(T −s ) (θ ∗
k (s ) − ω k θ

∗
j (s )) 2 L (s ) ds 

+ 

m 

2 
k 
(1 − ̂ ρ2 ) 

2 

∫ t 

0 

e 2 r(T −s ) (θ ∗
k (s ) − ω k θ

∗
j (s )) 2 L (s ) ds 

+ m k 

∫ t 

e r(T −s ) (γ ∗
k (s ) − ω k γ

∗
j (s )) ζdM 

P (s ) 

0 
−m k 

∫ t 

0 

e r(T −s ) σk q 
∗
k (s ) dB k (s ) + m k 

∫ t 

0 

e r(T −s ) ω k σ j q 
∗
j (s ) dB j (s ) 

+ g 0 k (t) + f 0 k (t) L (t) 
} 

ere, we assume that 

 1 (t) = 

̂ ρW 2 (t) + 

√ 

1 − ̂ ρ2 W (t) , 

here W (t) is a standard Brownian motion independent of W 2 ( t ).

et 

1 k (t) = −m k α(θ ∗
k (t) − ω k θ

∗
j (t)) e r(T −t) 

+ 

m 

2 
k 
(1 − ̂ ρ2 ) 

2 

(θ ∗
k (t) − ω k θ

∗
j (t)) 2 e 2 r(T −t) , 

2 k (t) = −m k ̂  ρ(θ ∗
k (t) − ω k θ

∗
j (t )) e r(T −t) , φ3 k (t ) = f 0 k (t) . 

rom Corollary 4.1 , we have f 0 k ( t ), which satisfies the following

DE 

f ′ 0 k (t) + 

1 

2 

ν2 (1 − ̂ ρ2 ) f 2 0 k (t) − ( ̂  ραν + K) f 0 k (t) − α2 

2 

= 0 . 

irect calculation yields 

1 k + φ′ 
3 k − Kφ3 k + 

1 

2 

(φ3 k ν + φ2 k ) 
2 = 0 

ecause ν, α, m k , f 0 k (t) , π ∗
k 
(t) , k = 1 , 2 , are bounded, there exist

onstants �, � > 0, s.t. 

ε 2 − ε 

2 

[ 
e 2 r(T −t) m 

2 
k σ

2 (1 − ̂ ρ2 )(θ ∗
k ) 

2 + (φ3 k σ + φ2 k ) 
2 
] 
< �, 

nd ̂ ασε + ( ̂  ρ2 νσ + σ 2 ) f 0 k (t) ε < �. 

et 

ξ+ 
k 

= 

−� + 

√ 

�2 + 2(� + 1) ε 

2 

, 

ξ−
k 

= 

−� −
√ 

�2 + 2(� + 1) ε 

2 

, 

 (t) = 

ξ+ 
k 

e ξ
+ 
k 

t − ξ−
k 

e ξ
−
k 

t 

e ξ
+ 
k 

t − e ξ
−
k 

t 
. 

hen a ( t ) > 0, and a ′ (t) + �a (t) + 

a (t) 2 

2 = −(� + 1) holds. 

Define 

1 k = ε φ1 k + e 2 r(T −t) ε 
2 − ε 

2 

m 

2 
k σ

2 (1 − ̂ ρ2 )(θ ∗
k ) 

2 , �2 k = εφ2 k , 

3 k = ε φ3 k + ε a (t) . 

onsequently, we have 

 J k (τi ∧ T , Z π
∗
k (τi ∧ T ) , L (τi ∧ T ) , 0) | ε 

≤ m 

−ε 
k 

exp 

{ 

−m k ε ̂  z k e 
rT − m k 

∫ t 

0 

e r(T −s ) ε 
[ 
(d k − ω k d j ) − (δ(q ∗k (s ))

−ω k δ(q ∗j (s ))) − (q ∗k (s ) n k − ω k q 
∗
j (s ) n j ) 

+(γ ∗
k (s ) − ω k γ

∗
j (s )) η(1 − �) 

] 
ds − m k 

∫ t 

0 

e r(T −s ) εσk q 
∗
k (s ) dB k (s )

+ m k 

∫ t 

0 

e r(T −s ) εω k σ j q 
∗
j (s ) dB j (s ) + εg 0 k (s ) 

+ m k 

∫ t 

0 

e r(T −s ) ε(γ ∗
k (s ) − ω k γ

∗
j (s )) ζdM 

P (s ) 
} 

× exp 

{ 

−m k 

∫ t 

0 

e r(T −s ) ε 
√ 

1 − ̂ ρ2 (θ ∗
k (s ) − ω k θ

∗
j (s )) 

√ 

L (s ) d W (s ) 

−m 

2 
k 
(1 − ̂ ρ2 ) 

2 

ε 2 
∫ t 

0 

e 2 r(T −s ) (θ ∗
k (s ) − ω k θ

∗
j (s )) 2 L (s ) ds 

} 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
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× exp 

{ 

∫ t 

0 

�1 k (s ) L (s ) ds + 

∫ t 

0 

�2 k (s ) 
√ 

L (s ) dW 2 (s ) + �3 k (t) L (t) 
} 

. 

By Lemma A.2 of Zeng and Taksar (2013) , we obtain 

�1 k + �′ 
3 k − �3 k K + 

(�3 k σ + �2 k ) 
2 

2 

= ε 
(

a ′ − a K + ( ̂  ρασε + ( ̂  ρ2 νσ + σ 2 ) f 0 k (t) ε) a + 

εσ 2 a 2 

2 

)
+ 

ε 2 − ε 

2 

[ 
e 2 r(T −t) m 

2 
k σ

2 (1 − ̂ ρ2 )(θ ∗
k ) 

2 + (φ3 k σ + φ2 k ) 
2 
] 

≤ ε
(

a ′ + a � + 

εσ 2 a 2 

2 

+ �
)
= ε(−� − 1 + �) = −ε < 0 

Then, according to A.1 of Zeng and Taksar (2013) , we have 

E 

[ 
exp 

{ 

∫ t 

0 

�1 k (s ) L (s ) ds + 

∫ t 

0 

�2 k (s ) 
√ 

L (s ) dW 2 (s ) + �3 k (t) L (t) 
] 

≤ exp 

(
Kβ�3 k (t) 

)
(A.1)

Using the Novikov condition, 

exp 

{ 

−m k 

∫ t 

0 

e r(T −s ) ε 
√ 

1 − ̂ ρ2 (θ ∗
k (s ) − ω k θ

∗
j (s )) 

√ 

L (s ) d W (s ) 

−m 

2 
k 
(1 − ̂ ρ2 ) 

2 

ε 2 
∫ t 

0 

e 2 r(T −s ) (θ ∗
k (s ) − ω k θ

∗
j (s )) 2 L (s ) ds 

} 

can be considered to be a local martingale. In addition, because

0 ≤ H ( t ) ≤ 1, we have: 

E 

[ 
exp 

{ 

−m k ε 

∫ t 

0 

e r(T −s ) (γ ∗
k (s ) − ω k γ

∗
j (s )) η(1 − �) ds 

+ m k ε 

∫ t 

0 

e r(T −s ) (γ ∗
k (s ) − ω k γ

∗
j (s )) ζdM 

p (s ) 
} ] 

< ∞ . 

Therefore, 

E 

[ 
| J k (τi ∧ T , ̂  Z 

π ∗
k 

k 
(τi ∧ T ) , L (τi ∧ T ) , 0) | ε 

] 
< ∞ , i = 1 , 2 , . . . . 

(A.2)

(2) Case of H(t) = 1 . Using a similar method, we have 

E 

[ 
| J k (τi ∧ T , ̂  Z 

π ∗
k 

k 
(τi ∧ T ) , L (τi ∧ T ) , 1) | ε 

] 
< ∞ , i = 1 , 2 , . . . . 

(A.3)

Combining (A.2) with (A.3) , we obtain 

E 

[ 
| J k (τi ∧ T , ̂  Z 

π ∗
k 

k 
(τi ∧ T ) , L (τi ∧ T ) , H(τi ∧ T )) | ε 

] 
< ∞ , 

i = 1 , 2 , . . . . (A.4)
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