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a b s t r a c t

This paper investigates an optimal multi-period investment management problem for a defined contri-
bution pension fund under the mean–variance criterion with imperfect information, meaning that both
observable and unobservable states exist in the financial market. The dynamics of the unobservable
market state process are formulated by a discrete-time finite-state hidden Markov chain with time-
varying transition probability matrices. Due to the long investment horizon of a defined contribution
pension fund, our paper considers only risky assets whose returns depend on both the observable and
unobservablemarket states. Meanwhile, the stochastic salary process is alsomodulated by the observable
and unobservable market states. By adopting sufficient statistics, the portfolio optimization problem for
the defined contribution pension fundwith imperfect information is transformed into one with complete
information. Then, the optimal investment strategy and the efficient frontier are explicitly derived using
the dynamic programming approach and the Lagrange dual method. Finally, numerical results show that
the imperfection of market state information may cause a loss of investment return.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recent decades have witnessed the widespread use of defined
contribution (DC) pension funds all over theworld due to the aging
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population and the longevity risk. Compared with the defined
benefit (DB) pension fund, the contribution rate of DC pension
funds is usually preset, and the benefit depends on the investment
return in the financial market during the accumulation period
before retiring. The DC pension fund thus has an advantage over
the DB pension fund by transferring the investment risk to the
retiree from the pension fund sponsor. This is why more and more
countries are beginning to partially or fully shift their pension fund
system from the DB to the DC scheme. Corresponding to this trend,
research on DC pension fund asset management has become a
hot topic in the fields of finance and actuarial science. In the past
two decades, the optimal investment management problem for
DC pension funds has been extensively studied under the CRRA
or CARA framework by maximizing the expected utility of the
terminal wealth; see, for example, Boulier et al. (2001), Haberman
and Vigna (2002), Cairns et al. (2006), Gao (2008), Di Giacinto and
Vigna (2012), and Blake et al. (2013). In addition, based on the
development of the dynamic mean–variance portfolio selection
theory, more studies are emerging on the optimal DC pension fund
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management problem under the mean–variance criterion, such as
Højgaard and Vigna (2007), He and Liang (2013), Yao et al. (2013,
2014, 2016a), Vigna (2014), andWuet al. (2015). As the investment
time horizon for a DC pension fund is usually quite long, most
studies focus on the effect of the various risks of a DC pension
fund investment strategy, such as the inflation risk, stochastic
salary risk, investment risk, and so on in a continuously trading
financial market. However, mean and variance, the two indexes
used to measure return and risk in an investment portfolio, can
easily be calculated from observed data on the financial market
and are frequently used in financial asset management. Therefore,
it is of great importance to further investigate the multi-period
investment management problem for a DC pension fund under the
mean–variance criterion. In this paper, we therefore try to solve
the optimal mean–variance investment problem for a DC pension
fund in a discrete-time financial market.

Since the pioneering work of Markowitz (1952), numerous
studies have emerged on the optimal mean–variance investment
problem. In particular, the successful dynamic mean–variance
portfolio selection proposed by Li and Ng (2000) and Zhou and
Li (2000) has stimulated enthusiasm among scholars to investi-
gate dynamic mean–variance optimization investment problems.
Although there has been some research on the mean–variance
DC pension fund management problem, further exploration is
needed. Tomake the optimization problemmore tractable, studies
commonly assume that the decision-maker can obtain all of the
financial market information when making an investment deci-
sion, which is known as the complete information assumption.
However, this assumption contradicts the investment reality. Usu-
ally, at the moment of decision-making, the investment decision
can only be made based on known information rather than the
entire body of information in the financialmarket. This implies that
the decision-making process depends on imperfect information.
Particularly for a DC pension fund with a long-term investment
horizon, the decision-maker’s judgement must be updated with
market information over time. Thismakes it is essential to consider
the effect of imperfect information on an investment strategy for a
DC pension fund. Thus, in this paper, we explore an optimal multi-
period investment problem for a DC pension fund in a financial
market with both observable and unobservable market informa-
tion, which extends the current research on the multi-period DC
pension fund to include the case with imperfect information.

In a setting with completely observable information, the model
parameters are assumed to be constant or to be deterministic func-
tions of time, making the investment optimization problem more
tractable using the optimal control theory andmethod. In practice,
however, the performance of the financial market depends on a
range of economic, financial, policy, natural and political factors.
Some information, such as interest rates, stock prices, exchange
rates, and so on, can be directly observed in variousways. Yet there
are also many unobservable factors, for example, the bull/bear
market state. Although these factors cannot be directly observed
and used to make investment decisions, they affect the evolution
of the financial market. Even in the security market with its per-
fect transparency, most investors cannot access a lot of market
information, such as the high frequency transition data of stocks.
The studies of Fama (1965), Keown and Pinkerton (1981), and
Fama and French (1992) show that the security market in the
USA is weak-form efficient, which means that financial market
information can only be partially known by investors. Moreover,
due to a variety of limitations, decision-makers may not try their
best to consider all potentially related economic variables and
market states to forecast the future returns on the financial assets,
but rather select a few important states, for example, bull/bear
market states. Thus generally, decision-makers can onlymake their
investment decision based on imperfect information rather than
the complete market information.

On the other hand, the performance of model parameters (such
as the return on financial assets) is not independent of themacroe-
conomic environment. Many economic variables (such as changes
in political/economic policies, innovations in technique, bull/bear
markets, wars, natural disasters, and the growth of GDP and CPI)
have significant impact on the return rates of financial assets. At the
moment of decision-making, investors have access to only a few
of these variables (such as a bull/bear market), while many other
variables (such as innovations in technique) cannot be known,
although they also affect the return rate of the financial assets and
some of this information is contained in the investors’ observa-
tions. Hence, investors usually try to gather as much information
as possible, so that they can infer the expected return on the
financial assets based on their observations of the financialmarket.
Thereafter, investors update their investment decisions in light
of newly observed information. When there is a long history of
observation data, estimations of the model parameters inevitably
fluctuate according to the shifts in these market variables.

The hidden Markov model (HMM) is often used to describe
the dynamics of this kind of imperfectly observable information
process. In recent decades, HMM has been extensively used to
investigate the portfolio optimization problem; for examples see
Honda (2003), Bäuerle and Rieder (2005), Bensoussan et al. (2009),
Elliott et al. (2010), Çanakoğlu and Özekici (2011), Yao and Li
(2013), and Bae et al. (2013). The above mentioned studies on
the portfolio optimization problem under HMM show that the
imperfectly observable information noticeably influences the op-
timal investment strategy, the investment benefit, and the beliefs
of decision-makers. In particular, the result of this imperfect in-
formation is that the optimal investment on a risky asset depends
on the investment time horizon, and the hedging demand of an
optimal investment strategy depends significantly on the estima-
tion of the model parameters, which can no longer be ignored.
However, until now, little research has focused on the effect of
imperfect information on the investment strategy for DC pension
funds,which have a relatively long investment horizon. During this
lengthy investment period, both the observable and unobservable
market states inevitably change over time. Although decision-
makers cannot receive all of the information about all of these
financial market states, additional information continually comes
to light and the estimation of model parameters is updated. Un-
doubtedly, the imperfect information about the financial market
should be taken into account during the investment process of the
DC pension fund. This is a major motivation of this paper.

In this paper, we consider an optimal multi-period investment
problem for a DC pension fundwhere the financialmarket has both
unobservable and observable states. The dynamics of the unob-
servable market state are described by a discrete-time finite-state
hidden Markov chain, and the transition matrices are assumed to
be time-varying rather than constant. The financialmarket consists
of multiple risky assets whose return rates depend on both the
observable and unobservable market states at that period. At each
time period, decision-makers receive a stochastic salary whose
growth rate depends on both the observable and unobservable
market states, and they contribute a certain amount of theirwealth
to the pension fund based on the observed information about the
financial market. Under themean–variance criterion, the decision-
makers allocate their wealth among these risky assets on the basis
of the observed market state information up to the current mo-
ment. This is a discrete-time optimization problem under imper-
fect information. By adopting the sufficient statistics method, the
optimal mean–variance DC pension fund management problem
under imperfect information is transformed into one with com-
plete information. The main contribution of this paper is to model
and solve an optimalmulti-periodmean–varianceDCpension fund
management problem in a market with imperfectly observable
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information.Moreover, the expressions of the optimal strategy and
the efficient frontier are explicitly derived. The other contribution
of this paper is to analyze and demonstrate the effect of the im-
perfect information on an efficient investment strategy and the
efficient frontier of the DC pension fund management problem.

The main findings for the optimal investment strategy and the
investment return of the dynamicmean–variance DC pension fund
in this paper are given as follows.

(i) Compared with the multi-period portfolio optimization
model of DC pension fund with complete information, the imper-
fect information reduces the investment return for the same level
of investment risk, and this result coincides with the continuous-
time portfolio optimization model (Xia, 2001). In other words, the
imperfectly observed information indeed causes the investment
loss, so that the recognition and application of imperfect informa-
tion model are economically valuable. In particular, when there
is more positive information received, the optimal investment
amount on risky assets under the complete information model is
greater than that under the hidden Markov model. However, this
phenomenon inverts when there are more negative information
observed.

(ii) For the same level of expected terminal wealth, the in-
vestment risk, which is measured by the variance of the terminal
wealth, clearly reduceswith the decrease in the volatility of salary’s
growth rate. As we can expect, given a lower volatility of salary’s
growth rate, the contribution amount at each time period to the
pension fund account becomes less uncertain. Then, in the case of
the same conditions for the market environment, this kind of liq-
uidity risk decreases at each time period. Therefore, the aggressive
investment risk over the whole investment horizon decreases.

(iii) When close to the end of investment, the optimal invest-
ment amount on risky asset reduces, which is consistent with the
investment practice in the financial market. Generally, the finan-
cial advisors always suggest the clients to reduce their investment
amount on risky asset when close to the retirement that is referred
to as the ‘‘age effect’’ (Campbell, 2006).

The remainder of this paper is organized as follows. Section 2
describes the optimization model of mean–variance DC pension
fund management with imperfect information in a discrete-time
financial market setting. In Section 3, using the sufficient statistics
method, the mean–variance portfolio optimization problem with
imperfect information is converted into an optimization problem
with complete information. Section 4 explicitly derives the optimal
investment strategy, the value function, and the efficient frontier of
the mean–variance DC pension fund management problem. Some
special cases are given in Section 5. Section 6 presents numerical
results for the effect of imperfect information on the efficient
investment strategy and the efficient frontier. Finally, Section 7
concludes the paper.

2. Model formulation

Suppose that the decision-maker of a DC pension fund begins to
allocate her/his wealth in the financial market at time 0 equipped
with the initial wealth W0 > 0, and wants to conduct a multi-
period investment activity over the planned time horizon T . The
investment horizon is divided into T periods, where the tth pe-
riod represents the time interval [t − 1, t) for t = 1, 2, . . . , T .
The decision-maker can allocate her/his wealth among multiple
risky assets at the beginning of each period without paying any
transaction fees. Assume that both observable and unobservable
states exist in the financial market, and that the decision-maker
can only obtain information on the observable market state. As
time passes, the decision-maker continues to receive information
to update her/his judgements about the returns on the financial
assets.

2.1. Hidden Markov model

Let Ut denote the unobservable market state at time t , and
assume that the process of the unobservable market state, U =

{Ut; t = 0, 1, . . . , T }, is a discrete-timeMarkov chainwith a finite-
state space F = {1, . . . , i, . . . , n} and a time-dependent transition
matrix Qt =

(
qt (i, l)

)
n×n

, where

qt (i, l) = Pr
{
Ut+1 = l|Ut = i

}
is the transition probability of the unobservable market state from
Ut = i at time t to Ut+1 = l at time t + 1 for t = 0, 1, . . . , T − 1.
Notice that Ut is unobservable, so U is a finite-state hiddenMarkov
chain.

Associated with the unobservable market state Ut is a random
variable Ot , which is the observable market state at time t and
takes values in a finite-state space S = {1, . . . , j, . . . ,m}. By ob-
serving Ot at time t , information regarding the true unobservable
market state Ut is obtained by the decision-maker. Suppose that
the performance of the financial market (the profits of risky assets)
evolves according to both U and O, while the decision-maker can
only observe the information process O. We assume that Ot is
the only reflection of the unobservable state at that time point,
Ut , which implies that Ot is independent of all the past history
information Ol(l < t) and Ul(l < t). In other words,

Pr {Ot = j|Ut ,Ut−1, . . . ,U0;Ot−1, . . . ,O0} = Pr {Ot = j|Ut} .

At time t , when Ut = i, we assume that an observation will have
message Ot = j with probability δt (i, j), i.e. δt (i, j) = Pr {Ot =

j|Ut = i}. Define the information matrix as ∆t = (δt (i, j))n×m,
i ∈ F , j ∈ S.

We denote the whole accumulatively observed information up
to time t by Ot = (. . . ,O−1,O0,O1, . . . ,Ot ) and It = {Ut ,Ot}. Let
ℑ

O
t denote the σ -field generated by the observed information up

to time t , i.e. ℑO
t = σ {(. . . ,O−1,O0,O1, . . . ,Ot )} for t = 0, 1, . . . ,

T − 1.

2.2. Wealth process and portfolio optimization problem under imper-
fect information

To maintain her/his living standard after retirement, the
decision-maker of the DC pension fund needs to convert the pen-
sion fund into an annuity that delivers a programmed pension at
each period after retiring. Before retirement, the decision-maker
has to contribute a certain amount of money to the pension fund
account at each period in a predefined way. Thus, salary is the
first key point the decision-maker should consider. Let st be the
salary the decision-maker receives at time t . In this paper, we
assume that, at each time period, the decision-maker’s salary level
is stochastic and its dynamic process is described as

st+1 = νt (Ut ,Ot )st , t = 0, 1, . . . , T − 1, (1)

where s0 is the initial salary. Notice that, in practice, the salary is
usually randomand its growth rate fluctuates according tomacroe-
conomic states,whichmaynot be completely known (observed) by
the decision-maker. Thus, we suppose that νt (Ut ,Ot ), the random
salary growth rate over period t +1, is determined by both the ob-
servable and unobservable market state. In the long run, the salary
level mostly tends to increase. So, without loss of generality, we
assume that νt (Ut ,Ot ) > 0 for almost surely all t = 0, 1, . . . , T −1
given the unobservable market state Ut and the observable market
state Ot . At the beginning of each time period, based on themarket
state observed at that moment, Ot , the decision-maker needs to
determine howmuch of the salary, ct (Ot )st , to contribute to the DC
pension fund. Here ct (Ot ) is a deterministic contribution rate based
on the observed information at time t .
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Due to the long investment horizon for a DC pension fund,
usually 30–40 years, almost all of the return rates on the financial
assets will fluctuate according to the financial market state over
time. Thus, here we consider a financial market with L + 1 risky
assets with random return rates. Denote the return rates of the
risky assets at time period t+1within the planning horizon by the
vector rt (Ut ,Ot ) = [r0t (Ut ,Ot ), r1t (Ut ,Ot ), . . . , rLt (Ut ,Ot )]′, where
r lt (Ut ,Ot ) is the return rate on the lth (l = 0, 1, . . . , L) risky asset
given the unknownmarket stateUt and the knownmarket stateOt
at time t . In the rest of this paper, we assume that the risky assets
are non-degenerated. This means that, for t = 0, 1, . . . , T − 1,
E[rt (Ut ,Ot )] ̸=

−→
0 and E[rt (Ut ,Ot )r′t (Ut ,Ot )] = Cov[rt (Ut ,Ot )] +

E[rt (Ut ,Ot )]E[r′t (Ut ,Ot )] is positive definite, where
−→
0 is an n di-

mension zero vector.
Let π l

t denote the amount of money invested in the lth risky
asset at the beginning of time period t + 1, and let Wt denote the
wealth of the DC pension fund at time t . At the beginning of period
t+1, integrating the contribution amount ct (Ot )st into the pension
fund account, the amount invested in the 0th risky asset over time
period t + 1 is equal to Wt + ct (Ot )st −

∑L
l=1π

l
t . Hence, the wealth

process W = {Wt , t = 0, 1, . . . , T } under the portfolio strategy
πt = [π1

t , π
2
t , . . . , π

L
t ]

′ evolves as

Wt+1 = r0t (Ut ,Ot )

(
Wt + ct (Ot )st −

L∑
l=1

π l
t

)

+

L∑
l=1

r lt (Ut ,Ot )π l
t

= r0t (Ut ,Ot )
(
Wt + ct (Ot )st

)
+ P′

t (Ut ,Ot )πt . (2)

Here, Pt (Ut ,Ot ) = [r1t (Ut ,Ot ) − r0t (Ut ,Ot ), r2t (Ut ,Ot ) − r0t (Ut ,Ot ),
. . . , rLt (Ut ,Ot )−r0t (Ut ,Ot )]′. In addition, rt (Ut ,Ot ) and νt (Ut ,Ot ) are
supposed to be statistically independent for t = 0, 1, . . . , T − 1.
The investment strategy π := {πt , t = 0, 1, . . . , T − 1} is called
admissible if πt is measurable with respect toℑ

O
t . LetΞ denote the

set of all admissible strategies.
We consider an investment decision-maker of a DC pension

fund who has a stochastic salary, contributes a certain amount
to the pension fund account, and allocates her/his wealth among
these risky assets based on all of the known information about the
financialmarket. The decision-maker predetermines a certain level
of wealth to maintain an adequate income after retirement. Based
on the known information, the decision-maker seeks an admissible
investment strategyπ such that the portfolio risk (measured by the
variance of the terminal wealth) is minimized given the expected
return level (measured by the expectation of the terminal wealth).
The optimal investment management problem of this DC pension
fund can be formulated as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
π

Var0[WT ] = E0[W2
T ] − ζ 2

s.t. E0[WT ] = ζ ,

Wt+1 = r0t (Ut ,Ot )
(
Wt + ct (Ot )st

)
+ P′

t (Ut ,Ot )πt ,

st+1 = νt (Ut ,Ot )st , t = 0, 1, . . . , T − 1

(3)

where E0[·] = E[·|I0,W0] and Var0[·] = Var[·|I0,W0]. We further
assume that short selling is allowed. The solution of problem (3) is
called an efficient investment strategy, and the point (Var0[WT ], ζ )
corresponding to an efficient investment strategy on the variance–
mean space is called an efficient point. The collection of all the
efficient points forms the efficient frontier in the variance–mean
space.

Remark 2.1. Considering multi-period optimal investment prob-
lems for DC pension funds, Yao et al. (2014), Wu and Zeng (2015),

and Yao et al. (2016b) studied the pre-commitment investment
strategy and the time-consistent investment strategy under the
mean–variance criterion. However, they assumed that the return
rates of risky assets over each period are independent and identi-
cally distributed, and that all of the information about the financial
markets can be observed at any time. Compared with the above
existing literature, the most significant feature of the model (3)
in this paper is the introduction of imperfectly observed market
information into themulti-periodmean–variance DC pension fund
management model problem. As the optimal investment model
with imperfect information, (3), it generalizes the existing litera-
ture on the DC pension fund management problem in following
ways: (i) It introduces a generalized financial market with both
observable and unobservablemarket states tomodulate the return
rate of financial assets, bringing the optimization problem closer to
investment practice in real financial markets; (ii) It assumes that
the salary growth rate depends on the unobservable and observ-
able market states, rather than setting the salary as a constant or
exogenous random variable unrelated to the state of the financial
market. As real salary growth rates usually fluctuate with the
macroeconomic environment, it is more reasonable to assume that
the salary growth rate varies with the state of the financial market.
(iii) Only risky assets are considered in our optimizationmodel (3).
That is because, in the long run, almost all of the financial assets
are uncertainty, and the return rates of the financial assets depend
on the macroeconomic environment states. On the other hand, the
optimization model (3) can reduce into the one with one risk-free
asset (such as bank account) when the 0th asset is set to be a
constant, i.e. r0t (U0,O0) = r0t .

As Ut is unobservable, this implies that problem (3) is an op-
timization problem with imperfect information that cannot be
solved directly by the dynamic optimization method. According to
thewell-known separation principle for dealingwith the optimiza-
tion problem with partially observable information (Wonham,
1968; Detemple, 1991), the initial optimization problem under
imperfect information (3) can be solved in two steps. The first
step is an inference problem in which an equivalent statistic is
calculated to replace the unobservable market state at that period,
transforming the optimization problem with imperfect informa-
tion into one with complete information. The second step, based
on the aforementioned estimated model parameter, adopts the
stochastic control theory to solve the optimal control problem. In
Section 3, an equivalent statistic is calculated and the optimization
problem with imperfect information is transformed into one with
complete information, after which Section 4 deals with the second
step of optimal control.

3. The portfolio optimization problemwith complete informa-
tion

At the beginning of each period, decision-makers usually up-
date their observed information set with the latest market infor-
mation and estimate the model parameters based on the observed
information up to the decision-making moment. Use

ϕt−1(i) = Pr{Ut−1 = i|Ot−1}

to denote the conditional probability of the unobservable market
state at time t − 1, Ut−1 = i, given the observation history Ot−1
at time t − 1. Let Φ(t − 1) = [ϕt−1(1), ϕt−1(2), . . . , ϕt−1(n)]′ be
the conditional probability distribution of Ut−1 given Ot−1 at time
t − 1. Φ(t − 1) ∈ IVn :=

{
x = [x1, x2, . . . , xn]′ ∈ Rn

:
∑n

i=1xi
= 1, xi ≥ 0, i = 1, 2, . . . , n} is usually called the information vec-
tor. At the next timepoint t , the unobservablemarket state changes
to Ut from Ut−1, and the observation process updates from Ot−1 to
Ot = (Ot−1,Ot ). In particular, the conditional probability of Ut = i,
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given the updated observation at time t , Ot = (Ot−1,Ot = j), is
specified as follows Monahan (1982),

ϕ
j
t (i) = Pr

{
Ut = i|Ot

}
= Pr

{
Ut = i|Ot−1,Ot = j

}
=

Pr
{
Ot = j|Ut = i,Ot−1

}
Pr
{
Ut = i|Ot−1

}
∑n

i=1 Pr
{
Ot = j|Ut = i,Ot−1

}
Pr
{
Ut = i|Ot−1

}
=

Pr
{
Ot = j|Ut = i

}∑n
l=1 Pr

{
Ut = i|Ut−1 = l

}
Pr
{
Ut−1 = l|Ot−1

}
∑n

i=1 Pr
{
Ot = j|Ut = i

}∑n
l=1 Pr

{
Ut = i|Ut−1 = l

}
Pr
{
Ut−1 = l|Ot−1

}
=

δt (i, j)
∑n

l=1 ϕt−1(l)qt−1(l, i)∑n
i=1 δt (i, j)

∑n
l=1 ϕt−1(l)qt−1(l, i)

= βt (Φ(t − 1), i, j). (4)

According to Eq. (4), the conditional probability distribution of the
unobservable market state, ϕt (i), can be inferred on the basis of
the information vector of the last time period, ϕt−1(l), and the
observed market state (updated observation) at time t , Ot = j.
In other words, Φ j(t) summarizes all the necessary information
for making decisions at time t and can completely substitute for
the unobservable state variables Ut (Monahan, 1982; Detemple,
1991). Moreover, Φ j(t) = {ϕ

j
t (1), ϕ

j
t (2), . . . , ϕ

j
t (n)} is the equiv-

alent statistic for the unobservable market state at time t . Note
that the conditional probability distribution of the unobservable
market state on the given observed market state O0 = j at the
initial time,Φ j(0) = {ϕ

j
0(1), ϕ

j
0(2), . . . , ϕ

j
0(n)}, can be calculated by

ϕ
j
0(i) =

Pr{U0 = i}δ0(i, j)∑n
i=1 Pr{U0 = i}δ0(i, j)

. (5)

In practice, Pr{U0 = i} is often estimated by the decision-maker
based on the preliminary analysis of the unobservablemarket state
at the initial time.

Monahan (1982) states that the information vector process
{Φ j(t), 0 ≤ t ≤ T , 1 ≤ j ≤ m} is a Markov chain whereΦ j(t) is the
state of thisMarkov chain at time t . AsΦ j(t) is an equivalent statis-
tic of the unobserved state variable, and the number ofΦ j(t) is the
same as the state number ofUt , we can replaceUt withΦ j(t), which
converts the partially observable Markov decision process into an
equivalent (completely observable) Markov decision process. Now
the optimization problem under imperfect information (3) can be
transformed into one with complete information as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
π

Var[WT |Φ
O0 (0),O0,W0] = E[W2

T |Φ
O0 (0),O0,W0] − ζ 2

s.t. E[WT |Φ
O0 (0),O0,W0] = ζ ,

Wt+1 = r0t (Φ
j(t), j)

(
Wt + ct (j)st

)
+ P′

t (Φ
j(t), j)πt ,

st+1 = νt (Φ j(t), j)st , Ot = j for
t = 0, 1, . . . , T − 1, j = 1, 2, . . . ,m.

(6)

This completes the first step of estimating the model parameters
and transforming an optimization problem with imperfect infor-
mation into one with complete information.

4. The optimal investment strategy and efficient frontier

In problem (6), the equation constraint E[WT |Φ
O0 (0),O0,W0]

= ζ canbe removedusing the Lagrangemethod. For the given fixed
Lagrange multiplier 2a, we can solve the equivalent optimization
problem (6) as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
π

E[W2
T |Φ

O0 (0),O0,W0] − ζ 2

− 2a
(
E[WT |Φ

O0 (0),O0,W0] − ζ

)
s.t. Wt+1 = r0t (Φ

j(t), j)
(
Wt + ct (j)st

)
+ P′

t (Φ
j(t), j)πt ,

st+1 = νt (Φ j(t), j)st , t = 0, 1, . . . , T − 1,
j = 1, 2, . . . ,m.

(7)

As

E[W2
T |Φ

O0 (0),O0,W0] − ζ 2 − 2a
(
E[WT |Φ

O0 (0),O0,W0] − ζ

)
= E

[
W2

T − 2aWT |Φ
O0 (0),O0,W0

]
− ζ 2 + 2aζ , (8)

and −ζ 2 + 2aζ is deterministic, optimization problem (7) can be
written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
π

E
[
W2

T − 2aWT |Φ
O0 (0),O0,W0

]
s.t. Wt+1 = r0t (Φ

j(t), j)
(
Wt + ct (j)st

)
+ P′

t (Φ
j(t), j)πt ,

st+1 = νt (Φ j(t), j)st , t = 0, 1, . . . , T − 1,
j = 1, 2, . . . ,m.

(9)

Because optimization problem (9) possesses the same optimal
investment strategy as optimization problem (7), we first solve
optimization problem (9).

For t = 0, 1, . . . , T − 1 and j = 1, 2, . . . ,m, let

V∗

t (Φ
j(t), j,Wt ) = min

π
E
[
W2

T − 2aWT |Φ
j(t), j,Wt

]
(10)

denote the optimal expected utility under the optimal decision
from time t to time T −1 given the observedmarket state at time t ,
Ot = j, the estimation probability distribution of the unobservable
market state at time t , Φ j(t), and the amount of wealth at time
t , Wt . In the rest of this paper, in order to analysis the impact of
the observed market state, we particularly denote the investment
strategy over period t + 1 by πt (j) given the observed market state
Ot = j.

According to Bellman’s principle of optimality, we have the
following Bellman equation for optimization problem (9).

V∗

t (Φ
j(t), j,Wt )

= min
πt (j)

E
[
V∗

t+1(Φ(t + 1),Ot+1,Wt+1)|Φ j(t), j,Wt

]
= min

πt (j)

n∑
i=1

ϕ
j
t (i)E

[
V∗

t+1(Φ(t + 1),Ot+1,Wt+1)
]

= min
πt (j)

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)E
[
V∗

t+1(Φ
k(t + 1), k, r0t (Φ

j(t), j)

× (Wt + ct (j)st ) + P′

t (Φ
j(t), j)πt )

]
(11)

where θt (i, k) =
∑n

l=1qt (i, l)δt+1(l, k), with boundary condition
V∗

T (Φ
j(T ), j,WT ) = W2

T − 2aWT .
By solving (11) recursively, we can obtain the optimal value

function and the optimal solution for problem (9), both of which
are summarized in the following theorem.

Theorem 4.1. The optimal value function of optimization problem
(9), namely the solution to the Bellman equation (11), is specified by

V ∗

t (Φ
j(t), j,W t ) = −a2Bt (j) − 2a

[
D1
t (j)W t + D2

t (j)st
]

+ A1
t (j)(W t )2 + 2A2

t (j)W tst + A3
t (j)(st )

2, (12)

and the optimal investment strategy is given by

π∗

t (j) = aσ−1
t (j)ht (j) − σ−1

t (j)
[
ηt (j)W t + ut (j)st

]
(13)

where ht (j), ηt (j), ut (j), σt (j), Bt (j), D
(1)
t (j), D(2)

t (j), A(1)
t (j), A(2)

t (j), A(3)
t (j)

are given in (A.6) to (A.14).

Proof. See Appendix A.

Lemma 4.1. For t = 0, 1, . . . , T − 1 and j = 1, 2, . . . ,m, we have
A(1)
t (j) > 0.
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Proof. See Appendix B.

Lemma 4.2. Suppose that for i = 1, 2, . . . ,m, τi is a nonnegative
constant which satisfies 0 ≤ τi ≤ 1 and

∑n
i=1τi = 1. We assume that

ξi = [ξ 1i , ξ
2
i , . . . , ξ

n
i ]

′ is a non-degenerate random vector, i.e. E[ξi] =[
E[ξ 1i ], E[ξ 2i ], . . . , E[ξ ni ]

]′
̸=

−→
0 , and Σi =

[
Cov(ξi1 , ξi2 )

]
n×n is

positive definite where 1 ≤ i1, i2 ≤ n. Then we have

0 <

[
n∑

i=1

τiE[ξi]

]′[ n∑
i=1

τiE[ξiξ ′

i ]

]−1 [ n∑
i=1

τiE[ξi]

]
< 1. (14)

Proof. See Appendix B.

Lemma 4.3. For t = 0, 1, . . . , T − 1 and j = 1, 2, . . . ,m, we have
0 < Bt (j) < 1.

Proof. See Appendix C.

From the relationship between the solutions to optimization
problem (6) and optimization problem (9), we notice that the
optimal value for problem (6) can be given by

f0(Φ j(0), j,W0) = V∗

t (Φ
j(0), j,W0) − ζ 2 + 2aζ

= −a2B0(j) − 2a
[
D(1)
0 (j)W0 + D(2)

0 (j)s0 − ζ

]
+ A(1)

0 (j)(W0)2 + 2A(2)
0 (j)W0s0

+ A(3)
0 (j)(s0)2 − ζ 2. (15)

According to the Lagrange dual theory (see Luenberger, 1968), the
optimal value of the objective for problem (6) can be reached by
maximizing f0(Φ j(0), j,W0) over a, i.e.

Var0,j[WT ] = max
a

f0(Φ j(0), j,W0). (16)

Notice that B0(j) > 0, which implies that an optimal solution of
optimizationproblem (16) exists. By using the first order condition,
we obtain the optimal solution of problem (16) given by

a∗
=
ζ − [D(1)

0 (j)W0 + D(2)
0 (j)s0]

B0(j)
. (17)

Substituting (17) back into (13), we obtain the optimal investment
strategy of the optimization model under the mean–variance cri-
terion (6), namely the efficient investment strategy, as follows

π∗

t (j) = −σ−1
t (j)ηt (j)Wt − σ−1

t (j)ut (j)st

+
ζ − [D(1)

0 (j)W0 + D(2)
0 (j)s0]

B0(j)
σ−1
t (j)ht (j). (18)

By also substituting (17) into (15), we obtain the efficient fron-
tier of optimization problem (6) as

Var0,j[WT ] =
1 − B0(j)
B0(j)

[
E0,j[WT ] −

D(1)
0 (j)W0 + D(2)

0 (j)s0
1 − B0(j)

]2

+

[
A(1)
0 (j) −

(D(1)
0 (j))2

1 − B0(j)

]
(W0)2

+ 2

[
A(2)
0 (j) −

D(1)
0 (j)D(2)

0 (j)
1 − B0(j)

]
W0s0

+

[
A(3)
0 (j) −

(D(2)
0 (j))2

1 − B0(j)

]
(s0)2. (19)

Theorem 4.2. For a pregiven expected level of terminal wealth

E0,j[W T ] = ζ (ζ ≥
D(1)
0 (j)W0+D(2)

0 (j)s0
1−B0(j)

), the optimal investment strategy

and efficient frontier of the multi-period investment problem for a
mean–variance DC pension fund (6) are given by (18) and (19),
respectively.

Let ϵt (j) = σ−1
t (j)ηt (j), τt (j) = σ−1

t (j)ut (j) and χt (j) = σ−1
t (j)

ht (j). Then the optimal investment strategy (18) can be rewritten
in the following concise form:

π∗

t (j) = −ϵt (j)Wt − τt (j)st +
ζ − [D(1)

0 (j)W0 + D(2)
0 (j)s0]

B0(j)
χt (j). (20)

Clearly, the efficient investment strategy (20) is an affine function
of the current wealth Wt and the current salary st . Moreover, (20)
discloses the ‘‘three-fund’’ property of the optimal strategy. Here,
ϵ̂t (j) =

ϵt (j)
1′·ϵt (j)

, τ̂t (j) =
τt (j)

1′·τt (j)
and χ̂t (j) =

χt (j)
1′·χt (j)

can be viewed as
three funds, where 1 is the n dimension all-one vector. The optimal
investment strategy is a linear combination of three mutual funds:
ϵ̂t (j), τ̂t (j), and χ̂t (j). Hence, in a financial market consisting of
n + 1 risky assets, investors need only keep a balance among four
financial assets: the 0th risky asset and three ‘‘artificial’’ mutual
funds, ϵ̂t (j), τ̂t (j), and χ̂t (j), according to the current wealth level
Wt , current salary level st , current observed market information
Ot = j, and initial variable (W0, s0). Even for a pure investment
problem, which means that st = 0, the optimal investment
strategy is a summation of two portfolios, one proportional to
ϵ̂t (j), and the other proportional to χ̂t (j). Notice that there is also a
kind of ‘‘three-fund’’ and ‘‘two-fund’’ property in the discrete-time
portfolio selection problem under the mean–variance framework
with full information; see for example Yao et al. (2016b). In the
continuous-time portfolio selection problem, Munk and Sørensen
(2004) also get an analogous three-fund theorem in a setting with
stochastic income.

Notice that the parameter B0(j) in (19) is only determined by the
observable and unobservable market information and the return
rate of the financial assets. As proved by Zhang et al. (2016), B0(j)
reflects the investment value of the risky assets from time 0 to time
T . The introduction of unobservable market information reduces
the investment value of the risky assets compared with the case
of completely observable market information, on average. As B0(j)
decreases, it reduces the investment value of the risky assets.
Var0,j[WT ] increases correspondingly, meaning that the invest-
ment risk for DC pension funds rises. This result is consistent with
our intuition. When less market information is observed by the
investor, the investment risk correlated with the expected excess
return on risky assets is increased, and risky assets become less
attractive to the investor.

Letting ζσmin =
D(1)
0 (j)W0+D(2)

0 (j)s0
1−B0(j)

, we receive the global minimum
variance

Varmin
0,j [WT ] =

[
A(1)
0 (j) −

(D(1)
0 (j))2

1 − B0(j)

]
(W0)2

+ 2

[
A(2)
0 (j) −

D(1)
0 (j)D(2)

0 (j)
1 − B0(j)

]
W0s0

+

[
A(3)
0 (j) −

(D(2)
0 (j))2

1 − B0(j)

]
(s0)2. (21)

5. Some special cases

The hidden Markov model proposed in the last section is a
generalized situation for the mean–variance optimal investment
management of a DC pension fund. In this section, we compare and
discuss some special cases of our hidden Markov model.

5.1. The case with one risk-free asset

First, we consider the case with one risk-free asset at each time
period, which implies that r0t (Ut ,Ot ) = r0t is constant over time
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period t + 1. Meanwhile, the salary growth rate and contribution
rate are supposed to be independent of the financial market states,
i.e. νt (i, j) = νt , ct (i) = ct for t = 1, 2, . . . , T − 1, i = 1, 2, . . . , n
and j = 1, 2, . . . ,m. Therefore, in this case, the model parameters
(A.6)–(A.14) reduce to

ht (j) = ηt (j) =

n∑
i=1

[
ϕ
j
t (i)E[Pt (i, j)]

×

m∑
k=1

θt (i, k) (1 − Bt+1(k))
]
, (22)

ut (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]
ht (j), (23)

σt (j) =

n∑
i=1

[
ϕ
j
t (i)E[Pt (i, j)P′

t (i, j)]
m∑

k=1

θt (i, k)(1 − Bt+1(k))
]
, (24)

Bt (j) = h′

t (j)σ
−1
t (j)ht (j) +

n∑
i=1

[
ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k)
]
, (25)

D(1)
t (j) = A(1)

t (j) = 1 − Bt (j), (26)

D2
t (j) = A(2)

t (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]
(1 − Bt (j)), (27)

A(3)
t (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]2

(1 − Bt (j)) + κt (j), (28)

κt (j) =

⎡⎣ T−1∑
q=t+1

( q−1∏
s=t+1

E[νs]

)
(r0p cp)

⎤⎦2

×

[
n∑

i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k))

]
Var[νt ]

+

n∑
i=1

[
ϕ
j
t (i)

m∑
k=1

θt (i, k)κt+1(k)
]
, κT−1(j) = 0. (29)

The optimal investment strategy (18) then reduces to

πMV
t (j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝T−1∏
s=t

r0s

⎞⎠Wt −

⎡⎣T−1∑
q=t

⎛⎝q−1∏
s=t

E[νs]

⎞⎠ (r0p cp)

⎤⎦ st+

ζ − (1 − B0(j))

⎧⎨⎩
⎛⎝T−1∏

t=0

r0t

⎞⎠W0 −

⎡⎣T−1∑
q=0

⎛⎝q−1∏
s=0

E[νs]

⎞⎠ (r0p cp)

⎤⎦ s0

⎫⎬⎭
B0(j)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
× σ−1

t (j)ht (j), (30)

and the efficient frontier is given by

Var0,j[WT ] =
1 − B0(j)
B0(j)

⎧⎨⎩E0,j[WT ] −

[(
T−1∏
t=0

r0t

)
W0

−

⎡⎣T−1∑
q=0

(q−1∏
s=0

E[νs]

)
(r0p cp)

⎤⎦ s0

⎤⎦⎫⎬⎭
2

+ κ0(j)s20. (31)

Let ψt = σ−1
t (j)ht (j) and ψ̂t =

ψt
1′ψt

, where 1 is the n dimens-
ional all-one vector. Then, the expression of the efficient invest-
ment strategy πMV

t (j) for DC pension funds is proportional to ψt ,
which is similar to the optimal investment strategy under the
Markov regime-switching model given in Çakmak and Özekici
(2006). The expression (30) also implies that the well-known one-
fund theorem in the classical dynamic portfolio choice problem (Li
and Ng, 2000) with complete information also holds true. Com-
pared with the optimal investment strategy (20), when there is

a risk-free asset (i.e. r0t (Ut ,Ot ) = r0t ), all three funds, ϵ̂t (j), τ̂t (j),
and χ̂t (j), reduce to ψ̂t (j). Correspondingly, the optimal investment
strategy (20) is proportional to ψ̂t (j), which goes back to the one-
fund theorem. Therefore, with one risk-free asset and n risky assets
in the financial market, the decision-maker for a DC pension fund
only needs to balance the amount of the pension fund account
among the risk-free asset and one ‘‘artificial’’ mutual fund, ψ̂t (j),
according to the current observedmarket information, current and
initial wealth levels, current and initial salary levels, and expected
return level. In particular, for a pure portfolio selection problem,
i.e. s0 = s1 = · · · = sT = 0, the optimal strategy (20) reduces to the
one in Li and Ng (2000). In this sense, we extend the multi-period
mean–variance portfolio problemof Li andNg (2000)with IID asset
returns into one with a stochastic salary and partially observed
information.

However, by comparing the efficient frontiers (19) and (31),
we find that introducing the risk-free asset simplifies the struc-
ture of the global minimum variance of the portfolio optimization
problem for DC pension funds. For the pure investment problem
in particular, i.e. s0 = 0, the efficient frontier is reduced to the
following expression

Var0,j[WT ] =
1 − B0(j)
B0(j)

[
E0,j[WT ] −

(
T−1∏
t=0

r0t

)
W0

]2

(32)

and

σ0,j[WT ] =
√
Var0,j[WT ]

=
1 − B0(j)
B0(j)

[
E0,j[WT ] −

(
T−1∏
t=0

r0t

)
W0

]
, (33)

which is a radial line emitted from point
(
0,
(∏T−1

t=0 r
0
t

)
W0

)
with

slope 1−B0(j)
B0(j)

in the standard derivation-mean plane. In fact, draw-
ing an analogy with a pure self-financing investment problem, the
optimal investment management problem for DC pension funds
can be viewed as an investment problem with stochastic capital
flow at the beginning of each period. Therefore, a liquidity risk
emerges in the investmentmanagement of DC pension funds com-
pared with a pure self-financing investment problem. As κ0(j) >
0 for j = 1, 2, . . . ,m, we have Varmin

0,j [WT ] = κ0(j)s20 > 0,
which implies that we cannot find a portfolio strategy to hedge the
investment risk due to the intake of stochastic capital flow. From
this point, the liquidity risk cannot be fully hedged by the market
assets, and ignoring the liquidity risk may lead to investment loss.

5.2. The case of completely observable information

When the state of the financial market at each time period can
be completely observed, we have Ut = Ot for t = 0, 1, . . . , T and
the hiddenMarkov chainU becomes aMarkov chain. Therefore, for
a given Ut = i,

δt (i, j) = Pr{Ot = j|Ut = i} =

{
1 if i = j,
0 if i ̸= j,

(34)

leading to ∆t = In, which means ∆t reduces to an n × n identical
matrix. Furthermore,

Φ j(t, i) = Pr{Ut = i|Ot−1,Ot = j} =

{
1 if i = j,
0 if i ̸= j.

(35)

And θt (j, k) =
∑n

l=1qt (j, l)δt (l, k) = qt (j, k). At time t under
conditions of observed market state Ot = j, the excess return
vector of risky assets Pt (i, j) reduces to Pt (j). Therefore, (22)–(29)
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further reduces to

ht (j) = ηt (j) = E[Pt (i, j)]

(
1 −

m∑
k=1

qt (i, k)Bt+1(k)

)
, (36)

ut (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]
ht (j), (37)

σt (j) = E[Pt (i, j)P′

t (i, j)]

(
1 −

m∑
k=1

qt (i, k)Bt+1(k)

)
, (38)

Bt (j) = h′

t (j)σ
−1
t (j)ht (j) +

m∑
k=1

qt (i, k)Bt+1(k), (39)

D(1)
t (j) = A(1)

t (j) = 1 − Bt (j), (40)

D(2)
t (j) = A(2)

t (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]
(1 − Bt (j)), (41)

A(3)
t (j) =

[
T−1∑
q=t

(q−1∏
s=t

E[νs]

)
(r0p cp)

]2

(1 − Bt (j)) + κt (j), (42)

κt (j) =

⎡⎣ T−1∑
q=t+1

( q−1∏
s=t+1

E[νs]

)
(r0p cp)

⎤⎦2

×

[(
1 −

m∑
k=1

qt (i, k)Bt+1(k)

)]
Var[νt ]

+

m∑
k=1

qt (i, k)κt+1(k), κT−1(j) = 0 (43)

where Bt (j) satisfies

1 − Bt (j) =

[
m∑

k=1

qt (j, k) (1 − Bt+1(k))

]
E[P′

t (j)]

×
[
E[Pt (j)P′

t (j)]
]−1E[Pt (j)].

The expressions of the optimal investment strategy and the effi-
cient frontier are also given as (30) and (31), respectively, with the
coefficients given by (36)–(43). Furthermore, if there is no pension
salary, but contributions exist, i.e. ct = 1, νt = 0, our model result
reduces to the case of Çakmak and Özekici (2006) where the return
on the risk-free asset is constant at each period.

6. Numerical analysis

In this section, we demonstrate the impact of imperfect in-
formation on the efficient frontier and the optimal investment
strategy by comparing the results between the complete infor-
mation model (CIM) and the hidden Markov model (HMM). We
use the Clsidx data of Shanghai’s A-share index from January 4,
2012 to November 31, 2015 to determine the parameters of the
hidden Markov model. By using the method of cluster analysis, we
determine two unobservable market states, named the bull and
bear market denoted by i = 1, 2. Meanwhile, we calculate the
lognormal return rates of risky asset. If the lognormal return rate is
greater than 0, we call it to be a positive outlook (PO). Otherwise, it
is a negative outlook (NO). So we have two market observations: a
positive outlook and a negative outlook. Using the Baum–Welch
algorithm which can be found in Rabiner (1989), we determine
the transition matrices of the hidden Markov chain U at each time
period (year) as follows

Q1 =

[
0.7161 0.2839
0.2192 0.7808

]
, Q2 =

[
0.3316 0.6684
0.6892 0.3108

]
,

Q3 =

[
0.995 0.005
0.1283 0.8717

]
, Q4 =

[
0.9616 0.0384

0 1

]
.

During the end of 2011 to early 2012, the financial market in
China keeps a declining trend. So we set the initial probability
distribution of the unobservable market state to be 1 probability
for bear market and 0 probability for bull market. Meanwhile, the
relationship between observable and unobservable market states
at each time period is evaluated as the following matrices,

∆1 =

[
0.5680 0.4320
0.3273 0.6727

]
, ∆2 =

[
0.5737 0.4263
0.4855 0.5145

]
,

∆3 =

[
0.3246 0.6754
0.6925 0.3075

]
, ∆4 =

[
0.6298 0.3702
0.5637 0.4363

]
.

In other words, according to ∆1, the first unobservable market
state emits a positive outlook with a probability of 0.5737 and
negative outlook with a probability of 0.4320. The second unob-
servable market state emits a positive outlook with a probability
of 0.3273 and a negative outlook with a probability of 0.6727.

Consider a DC pension fund with initial wealth W0 = 1 and
initial salary s0 = 0.2, and the pension fund member plans to
retire at time T = 4. At the beginning of each period, the pension
fund member contributes 15 percent of her/his salary to the DC
pension fund account, i.e. ct = 0.15. Suppose that the 0th risky
asset is a bank account with return rates r0t (Ut ,Ot ) = 4.3%. We
choose three stocks listed in China Stock Market with stock codes
000651, 300325, 600036 as the risky assets in our model. Using
the historical daily data from January 5, 2015 to November 30,
2016, we obtain the return rates on these three risky assets under
different market states (Ut ,Ot ) at each time period as

PO NO

E[r1t (i, j)] =

[
0.0335

−0.002

0.0260

0.0209

]
i = 1

i = 2,

E[r2t (i, j)] =

[
0.0369

0.0003

0.0206

−0.0038

]
,

E[r3t (i, j)] =

[
0.0340

0.0323

0.0187

0.0179

]
,

for t = 0, 1, . . . , T − 1, i = 1, 2, and j = PO,NO. That is to say,
at each time period, when the unobservable market state is i = 1
and the observed market state is PO, the expected return rates on
the risky assets are 0.0335 for the first risky asset, 0.0369 for the
second, 0.034 for the third. In addition,we set E[νt (i, j)] = 1.15 and
E[νt (i, j)]2 = 1.3 for i = 1, 2, j = PO,NO, and t = 0, 1, . . . , T − 1.

6.1. Analysis of the effect of imperfect information on the efficient
frontier

Fig. 1 illustrates the efficient frontier of the hidden Markov
model under the market observation of a positive or negative
outlook. Obviously, in the hidden Markov model, the performance
of the efficient frontier under the positive outlook exceeds the
case of negative outlook, which is consistent with our intuition
about the investment activity in the financial market. In Fig. 1,
we can see that, to achieve the same expected terminal wealth,
the decision-maker suffers more investment risk under a negative
rather than a positive outlook market observation. Usually, when
the financial market performance shows a negative rather than
a positive outlook, the return rates of the risky assets become
more volatile. Correspondingly, the decision-maker bears a greater
investment risk under a negative outlook market. Meanwhile, the
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Fig. 1. Efficient frontiers for the hidden Markov model under positive and the
negative outlooks.

difference of the investment risk between the positive and nega-
tive outlook becomes greater with the increasing of the expected
terminal wealth.

Fig. 2 compares the efficient frontiers of the complete informa-
tion model and the hidden Markov model under market perfor-
mancewith a positive and a negative outlook, separately. Similar to
the results of the hiddenMarkovmodel, the efficient frontier of the
complete information model under a positive outlook takes an ad-
vantage over a negative market observation. Under the same level
of investment risk, the expected terminal wealth of the complete
information model is much more greater than that of the hidden
Markov model whether or not the market observation is positive
or negative. This implies that, for the mean–variance DC pension
fund, themoremarket information received, the better investment
benefit achieved. Our result agrees with the investment activity in
financial markets. Actually, the decision-maker of the DC pension
fund stands the financial market with limited information. In order
to obtain a better investment return, the decision-makers usually
try their best to gather the information to correct their estimation
about the returns of financial assets. The more market information
is obtained, the better market state is evaluated. So the decision-
maker can grab more investment opportunities and reduce the
investment risk. However, under a positive outlook, the difference
in the efficient frontiers between the complete information model
and the hidden Markov model is smaller than that with a negative
outlook. The reason may lie in that the uncertainty under a neg-
ative outlook is higher than that under a positive outlook. Hence,
the volatility of the risky asset’s return becomes greater and the
decision-maker has to bear more investment risk.

Salary is a key factor that significantly affect the performance
of the DC pension fund. So we want to analyze the impact of the
salary’s growth rate on the efficient frontier. If we let the other
model parameters remain unchanged and vary the variance of
the salary’s growth rate, Var[νt (i, j)], from 0.3 to 0.7, we obtain
the efficient frontiers under the observations of both a positive
and a negative outlook, as demonstrated in Fig. 3. We can find
that the decision-maker endures more investment risk for the
same level of expected terminal wealth when the variance of
the salary growth rate increases. That is to say, the uncertainty
on the growth rate leads to more investment uncertainty. Com-
paring the two subfigures in Fig. 3, we can conclude that the
efficient frontier of the optimal DC pension fund management
problem under a positive outlook exceeds that under a negative
outlook.

6.2. Analysis of the optimal investment strategy

Tables 1 and 2 exhibit the investment decision-making process
for both the complete information model and the hidden Markov
model under the two different observation processes.

In Tables 1 and 2, for both positive and negative outlooks obser-
vation process, we find that the absolute value of the investment
of the risky assets decreases as the investment activity approaches
the end time point under both complete and imperfect information
settings. This is consistent with real investment practice of DC
pension funds in financial markets. Usually, financial consultants
advise investors to reduce their investment amount in stockswhen
it approaches to the end of investment activity or the time of
retirement. This is called ‘‘age effect’’. Regardless of positive or
negative outlooks, the short-selling amount is greater in the case
with complete information than that in the case with imperfect
information, and the (positive) investment amount under imper-
fect information is lower than that under complete information.
When the financial market shows more positive information, the
decision-maker under CIM invests more money in the risky assets
comparing to the case of HMM. However, if the financial market
continuously emits negative information, the absolute amount
invested in the risky assets under HMM is greater than that under
CIM. When the decision-maker gets the complete information of
the financial market, she/he can precisely forecast the future re-
turns of the risky assets. If the market information looks more and
more pessimistic, it is natural to reduce the investment amount
in the risky assets to control investment risk. However, under the
partially observed information, there inevitably exists estimation
error and the optimal investment strategy may fluctuate up and
down comparing to the case of CIM.

Fig. 2. Efficient frontiers of the hidden Markov model and the complete information model under the market observation of a positive and a negative outlook.
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Fig. 3. The effects of Var[νt ] on the efficient frontier of hidden Markov model.

Table 1
Decision-making process under a positive outlook observation process.

t = 0 t = 1 t = 2 t = 3
O1 = PO O2 = PO O3 = PO O4 = PO

Optimal investment amount on 3 assets under CIM
Asset 1 −9.9075 −8.3097 −6.0580 −4.4840
Asset 2 12.0280 10.1025 7.9345 5.4006
Asset 3 −6.1520 −5.1179 −4.0580 −2.7651

Optimal investment amount on 3 assets under HMM
Asset 1 −8.8430 −4.0292 −1.4228 −0.0816
Asset 2 10.1456 4.5553 1.6000 0.0915
Asset 3 −3.2097 −1.1699 −0.3757 −0.0205

Table 2
Decision-making process under a negative outlook observation process.

t = 0 t = 1 t = 2 t = 3
O1 = NO O2 = NO O3 = NO O4 = NO

Optimal investment amount on 3 assets under CIM
Asset 1 2.5250 2.3248 1.9387 1.5906
Asset 2 1.6231 1.4439 1.2445 1.0215
Asset 3 −1.3360 −1.1894 −1.0256 −0.8461

Optimal investment amount on 3 assets under HMM
Asset 1 −7.8462 −4.6422 −3.2242 −2.7453
Asset 2 7.5026 4.0984 2.7667 2.3238
Asset 3 2.4944 1.9710 1.6236 1.4846

Table 3
Sharpe ratios.

O = (PO,PO,PO,PO) O = (NO,NO,NO,NO)

CIM 5.4643 4.9967
HMM 3.0476 2.6697

In order to measure the investment value on the risky assets
from time 0 to time T , we define the Sharpe ratio for theDCpension
fund in discrete-time setting as follows

Sharpe[0, T ] =

E0,j(WT ) −

(∏T−1
t=0 r0t

)
W0√

Var0,j(WT )
(44)

which is similar to the definition in the static investment envi-
ronment. Then, under the above mentioned observation processes
O = (PO,PO,PO,PO) andO = (NO,NO,NO,NO), we obtain the Sharpe
ratios for CIM and HMM respectively as follows (see Table 3).

As imagined, no matter for a positive or negative outlook ob-
servation process, the investment value on the risky assets for DC
pension fund in case of imperfect information is smaller than that
in case with complete observable information. In other words, the
more market information the decision-maker receives, the more
investment benefit she/he will obtain. On the other hand, compar-
ing the Sharpe ratios of CIMandHMM,we find that the Sharpe ratio
under a positive observation process is greater than that under a
negative observation process. That is to say, the optimistic market

performance implies a greater investment return comparing with
the pessimistic marker observation.

7. Conclusion

Although most studies of the optimal DC pension fund man-
agement problem have been conducted under a setting of com-
pletely observable market information, this paper investigates the
optimal investment strategy in a financial market with imperfect
information for a multi-period mean–variance DC pension fund
management problem. This setting is justified because decision-
makers can receive only limited (incomplete) information about
financialmarkets. Over the long investment period,more andmore
observed information updates the market observation process.
Consequently, decision-makers make their investment decisions
based on the information observed up to that moment. We formu-
late our imperfect information market by separating the financial
market states into two parts, the observable market state and
the unobservable market state, and we call it the hidden Markov
model. The explicit expressions for the investment strategy and the
efficient frontier are obtained under a mean–variance framework
using sufficient statistics, the dynamic programming method, and
the Lagrange dual theory. By adopting numerical analysis, the
effects of the unobservable market information on the optimal
investment strategy and efficient frontier are studied in detail.
Our main results are as follows. (i) Due to the imperfection of the
observedmarket information, decision-makers get less investment
return with incompletely observable than completely observable



220 L. Zhang et al. / Insurance: Mathematics and Economics 79 (2018) 210–224

information under the same level of investment risk; however, the
more positive information is observed about the financial market,
the higher the investment yield received. (ii) For the same level
of investment risk, a greater variance in the salary growth rate
increases the investment risk. (iii) The higher the contribution rate,
the higher the investment yield, and this increase is more rapid
under a positive than a negative outlook. (iv) In general, lessmoney
is invested in risky assets in a financial market with imperfect
information than with complete information. However, in either
case, the more positive signals decision-makers receive, the more
they invest in risky assets.

Appendix A. Proof of Theorem 4.1

We prove this theorem using mathematical induction on t .
According to the Bellman equation (11) and the terminal condi-

tionV∗

T (Φ
j(T ), j,WT ) = W2

T−2aWT , wehave the following formula
at time point t = T − 1 with the given observed market state
OT−1 = j,

V∗

T−1(Φ
j(T − 1), j,WT−1)

= min
πT−1(j)

E
[
V∗

T (Φ
OT (T ),OT ,WT )|Φ j(T − 1), j,WT−1

]
= min

πT−1(j)
E
[
W2

T − 2aWT |Φ
j(T − 1), j,WT−1

]
= min

πT−1(j)

n∑
i=1

ϕj(T − 1, i)
m∑

k=1

θT−1(i, k)E
[
W2

T − 2aWT

]
= min

πT−1(j)

n∑
i=1

ϕ
j
T−1(i)E

{ [
r0T−1(i, j)WT−1 + r0T−1(i, j)cT−1(j)sT−1

+ P′

T−1(i, j)πT−1(j)
]2

− 2a
[
r0T−1(i, j)WT−1 + r0T−1(i, j)cT−1(j)sT−1

+ P′

T−1(i, j)πT−1(j)
] }

= min
πT−1(j)

n∑
i=1

ϕ
j
T−1(i)E

{[
(r0T−1(i, j))

2W2
T−1 + cT−1(j)2

× (r0T−1(i, j))
2s2T−1

+π ′

T−1(j)[PT−1(i, j)P′

T−1(i, j)]πT−1(j) + 2cT−1(j)

× [r0T−1(i, j)]
2WT−1sT−1

+ 2cT−1(j)[r0T−1(i, j)P
′

T−1(i, j)]sT−1πT−1(j)

+ 2[r0T−1(i, j)P
′

T−1(i, j)]WT−1πT−1(j)
]

− 2ar0T−1(i, j)WT−1 − 2a[cT−1(j)r0T−1(i, j)]sT−1

− 2aP′

T−1(i, j)πT−1(j)
}

= min
πT−1(j)

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2(WT−1)2

+

[
(cT−1(j))2

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2

]
s2T−1

+π ′

T−1(j)

[
n∑

i=1

ϕ
j
T−1(i)E[PT−1(i, j)P′

T−1(i, j)]

]
πT−1(j)

+ 2WT−1

[
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)P

′

T−1(i, j)]

]
πT−1(j)

+ 2sT−1

[
cT−1(j)

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)P

′

T−1(i, j)]

]

×πT−1(j)

+ 2WT−1

[
cT−1(j)

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2

]
sT−1

− 2aWT−1

[
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

]

− 2asT−1

[
cT−1(j)

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

]

− 2a

[
n∑

i=1

ϕ
j
T−1(i)E[P

′

T−1(i, j)]

]
πT−1(j), (A.1)

where the third equality is obtained using
∑m

k=1θT−1(i, k) = 1, and
the fifth equality is obtained using

∑n
i=1ϕ

j
T−1(i) = 1. Because for

j = 1, 2, . . . ,m, E[PT−1(i, j)P′

T−1(i, j)] is positive definite, ϕj
T−1(i) ≥

0 and
∑n

i=1ϕ
j
T−1(i) = 1, then

σT−1(j) =

n∑
i=1

ϕ
j
T−1(i)E[PT−1(i, j)P′

T−1(i, j)]

is positive definite for all j = 1, 2, . . . ,m. Therefore, by the first
order condition about πT−1(j), we obtain the optimal decision

π∗

T−1(j) = aσ−1
T−1(j)hT−1(j) − σ−1

T−1(j)

×

[
ηT−1(j)WT−1 − uT−1(j)sT−1

]
, (A.2)

where

hT−1(j) =

n∑
i=1

ϕ
j
T−1(i)E[PT−1(i, j)],

ηT−1(j) =

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)PT−1(i, j)],

uT−1(j) = cT−1(j)
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)PT−1(i, j)].

Substituting (A.2) back into (A.1) yields

V∗

T−1(Φ
j(T − 1), j,WT−1)

= −a2BT−1(j) − 2a
[
D(1)
T−1(j)WT−1 + D(2)

T−1(j)sT−1

]
+ A(1)

T−1(j)(WT−1)2 + 2A(2)
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T−1(j)(sT−1)2

where
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T−1(j)σ
−1
T−1(j)hT−1(j),

D(1)
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ϕ
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2
− η′
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0
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]
,
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A(3)
T−1(j) = (cT−1(j))2

[
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2

− η′

T−1(j)σ
−1
T−1(j)ηT−1(j)

]
.

Generally, we suppose that (10) holds true for t + 1, i.e.

V∗

t+1(Φ
j(t + 1), j,Wt+1)

= −a2Bt+1(j) − 2a
[
D(1)
t+1(j)Wt+1 + D(2)
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According to the Bellman equation (11), for t we have
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0
t (i, j)]E[νt (i, j)]

m∑
k=1

θt (i, k)A
(2)
t+1(k)

]]
×Wtst . (A.4)

Notice that A(1)
t+1(k) > 0 and E[Pt (i, j)P ′

t (i, j)] is positive definite,
therefore

σt (j) =

n∑
i=1

ϕ
j
t (i)E[Pt (i, j)P′

t (i, j)]
m∑

k=1

θt (i, k)A
(1)
t+1(k)

is positive definite. The optimal solution can now be derived using
the first order condition about πt (j) given as

π∗

t (j) = aσ−1
t (j)ht (j) − σ−1

t (j) [ηt (j)Wt + ut (j)st ] (A.5)

where

ht (j) =

n∑
i=1

[
ϕ
j
t (i)E[Pt (i, j)]

m∑
k=1

θt (i, k)D
(1)
t+1(k)

]
, (A.6)

ηt (j) =

n∑
i=1

[
ϕ
j
t (i)E[r

0
t (i, j)Pt (i, j)]

m∑
k=1

θt (i, k)A
(1)
t+1(k)

]
, (A.7)

ut (j) = ct (j)
n∑

i=1

[
ϕ
j
t (i)E[r

0
t (i, j)Pt (i, j)]

m∑
k=1

θt (i, k)A
(1)
t+1(k)

+

n∑
i=1

ϕ
j
t (i)E[νt (i, j)]E[Pt (i, j)]

m∑
k=1

θt (i, k)A
(2)
t+1(k)

]
. (A.8)

By substituting π∗
t (j) back into (A.4), the expression of the optimal

value function V∗

t (Φ
j(t), j,Wt ) can be analytically given by

V∗

t (Φ
j(t), j,Wt ) = −a2B(j) − 2a

[
D(1)
t (j)Wt + D(2)

t (j)st
]

+ A(1)
t (j)(Wt )2 + 2A(2)

t (j)Wtst + A(3)
t (j)(st )2

where

Bt (j) = h′

t (j)σ
−1
t (j)ht (j) +

n∑
i=1

[
ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k)

]
, (A.9)

D(1)
t (j) =

n∑
i=1

[
ϕ
j
t (i)E[(r

0
t (i, j))

2
]

m∑
k=1

θt (i, k)D
(1)
t+1(k)

]
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− h′

t (j)σ
−1
t (j)ηt (j), (A.10)

D(2)
t (j) = ct (j)

[
n∑

i=1

ϕ
j
t (i)E[r

0
t (i, j)]

m∑
k=1

θt (i, k)D
(1)
t+1(k)

]

+

n∑
i=1

[
ϕ
j
t (i)E[νt (i, j)]

m∑
k=1

θt (i, k)D
(2)
t+1(k)

]
− h′

t (j)σ
−1
t (j)ut (j), (A.11)

A(1)
t (j) =

n∑
i=1

[
ϕ
j
t (i)E[(r

0
t (i, j))

2
]

m∑
k=1

θt (i, k)A
(1)
t+1(k)

]
− η′

t (j)σ
−1
t (j)ηt (j), (A.12)

A(2)
t (j) = ct (j)

[
n∑

i=1

[
ϕ
j
t (i)E[(r

0
t (i, j))

2
]

m∑
k=1

θt (i, k)A
(1)
t+1(k)

]]

+

n∑
i=1

[
ϕ
j
t (i)E[r

0
t (i, j)]E[νt (i, j)]

m∑
k=1

θt (i, k)A
(2)
t+1(k)

]
− η′

t (j)σ
−1
t (j)ut (j), (A.13)

A(3)
t (j) = (ct (j))2

[
n∑

i=1

[
ϕ
j
t (i)E[(r

0
t (i, j))

2
]

m∑
k=1

θt (i, k)A
(1)
t+1(k)

]]

+ 2ct (j)

[
n∑

i=1

[
ϕ
j
t (i)E[r

0
t (i, j)]E[νt (i, j)]

×

m∑
k=1

θt (i, k)A
(2)
t+1(k)

]]

+

n∑
i=1

[
ϕ
j
t (i)E[(νt (i, j))

2
]

m∑
k=1

θt (i, k)A
(3)
t+1(k)

]
− u′

t (j)σ
−1
t (j)ut (j). (A.14)

For t = 0, 1, . . . , T − 1, and BT (j) = D(3)
T (j) = A(2)

T (j) = A(3)
T (j) = 0,

D(1)
T (j) = A(1)

T (j) = 1.
This means that (12) and (13) hold true for t . Then, by mathe-

matical induction, we complete the proof of the theorem.

Appendix B. Proof of Lemma 4.1

Because, at time t , for any given unobservable market state
Ut = i and observable market state Ot = j, E[rt (i, j)r′t (i, j)] =

Cov[rt (i, j)] + E[rt (i, j)]E[r′t (i, j)] is positive definite for all time
periods, where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, we have

E[rt (i, j)r′t (i, j)]

=

⎡⎢⎢⎣
E[r0t (i, j)]

2 E[r0t (i, j)r
1
t (i, j)] · · · E[r0t (i, j)r

L
t (i, j)]

E[r1t (i, j)r
0
t (i, j)] E[r1t (i, j)]

2
· · · E[r1t (i, j)r

L
t (i, j)]

· · · · · · · · · · · ·

E[rLt (i, j)r
0
t (i, j)] E[rLt (i, j)r

1
t (i, j)] · · · E[rLt (i, j)]

2

⎤⎥⎥⎦
> 0, (B.1)

for t = 0, 1, . . . , T − 1. Then, following Eq. (B.1), we have[
E[r0t (i, j)]

2 E[r0t (i, j)P
′

t (i, j)]
E[r0t (i, j)Pt (i, j)] E[Pt (i, j)P′

t (i, j)]

]

=

⎡⎢⎣ 1 0 · · · 0
−1 1 · · · 0
· · · · · · · · · · · ·

−1 0 · · · 1

⎤⎥⎦ E[rt (i, j)r′t (i, j)]

×

⎡⎢⎣ 1 −1 · · · −1
0 1 · · · 0
· · · · · · · · · · · ·

0 0 · · · 1

⎤⎥⎦ > 0. (B.2)

According to (B.2), we obtain

E[Pt (i, j)P′

t (i, j)] > 0, ∀t = 0, 1, . . . , T − 1,
i = 1, 2, . . . , n and j = 1, 2, . . . ,m. (B.3)

Because ϕj
T−1(i) > 0 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, we

have
n∑

i=1

ϕ
j
T−1(i)E[PT−1(i, j)P′

T−1(i, j)] > 0 (B.4)

and
n∑

i=1

ϕ
j
T−1(i)

[
E[r0T−1(i, j)]

2 E[r0T−1(i, j)P
′

T−1(i, j)]
E[r0T−1(i, j)Pt (i, j)] E[PT−1(i, j)P′

T−1(i, j)]

]

=

⎡⎢⎢⎢⎢⎣
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)P

′

T−1(i, j)]

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)PT−1(i, j)]

n∑
i=1

ϕ
j
T−1(i)E[PT−1(i, j)P′

T−1(i, j)]

⎤⎥⎥⎥⎥⎦
> 0, (B.5)

which implies that
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2
−

[
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)P

′

T−1(i, j)]

]
·

[
n∑

i=1

ϕ
j
T−1(i)E[PT−1(i, j)P′

T−1(i, j)]

]−1

·

[
n∑

i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)PT−1(i, j)]

]
> 0, (B.6)

i.e.

A(1)
T−1(j) =

n∑
i=1

ϕ
j
T−1(i)E[r

0
T−1(i, j)]

2
− η′

T−1(j)σ
−1
T−1(j)ηT−1(j) > 0.

Suppose that at time t + 1 we have A(1)
t+1(j) > 0. Then

τ j(t, i) = ϕ
j
t (i)

m∑
k=1

θt (i, k)A
(1)
t+1(k) > 0,

and
n∑

i=1

τ j(t, i)E[Pt (i, j)P′

t (i, j)] > 0.

Furthermore,
n∑

i=1

τ j(t, i)
[

E[r0t (i, j)]
2 E[r0t (i, j)P

′

t (i, j)]
E[r0t (i, j)Pt (i, j)] E[Pt (i, j)P′

t (i, j)]

]

=

⎡⎢⎢⎢⎢⎣
n∑

i=1

τ j(t, i)E[r0t (i, j)]
2

n∑
i=1

τ j(t, i)E[r0t (i, j)P
′

t (i, j)]

n∑
i=1

τ j(t, i)E[r0t (i, j)Pt (i, j)]
n∑

i=1

τ j(t, i)E[Pt (i, j)P′

t (i, j)]

⎤⎥⎥⎥⎥⎦
> 0, (B.7)

which implies that
n∑

i=1

τ j(t, i)E[r0t (i, j)]
2
−

[
n∑

i=1

τ j(t, i)E[r0t (i, j)P
′

t (i, j)]

]
·

[
n∑

i=1

τ j(t, i)E[Pt (i, j)P′

t (i, j)]

]−1

·

[
n∑

i=1

τ j(t, i)E[r0t (i, j)Pt (i, j)]

]
> 0.
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That is

A(1)
t (j) =

n∑
i=1

ϕ
j
t (i)E[r

0
t (i, j)]

2
m∑

k=1

θt (i, k)A
(1)
t+1(k) − η′

t (j)σ
−1
t (j)ηt (j)

> 0

for j = 1, 2, . . . ,m. This means that A1
t (j) > 0 holds true for t .

By the principle of mathematical induction, we can conclude that
A1
t (j) > 0 holds for t = 0, 1, . . . , T − 1 and j = 1, 2, . . . ,m.

Appendix C. Proof of Lemma 4.2

First, we need some basic knowledge about the positive definite
matrix, which we list here.

N1. In this whole paper, if a matrix M is positive definite, we
denote it by M > 0.

N2. For positive definite matrices, we define the partial order
relation between the matrices as follows. If M and N are two
positive definite matrices, i.e. M > 0 and N > 0, and they satisfy
M − N > 0, then M > N > 0.

N3. If M and N are two positive definite matrices which satisfy
M > N > 0, then N−1 > M−1 > 0.

N4. If M and N are two positive definite matrices which satisfy
MN = NM, then MN > 0.

Proof. As ξi = [ξ 1i , ξ
2
i , . . . , ξ

n
i ]

′ is non-degenerate and Σi is
positive definite, then E[ξiξ ′

i ] = Σi + E[ξi]E[ξ ′

i ] is positive definite
for any i = 1, 2, . . . , n. Therefore,

n∑
i=1

τiE[ξiξ ′

i ] =

n∑
i=1

τiΣi +

m∑
i=1

τiE[ξi]E[ξ ′

i ]

=

n∑
i=1

τiΣi +

(
E[

√
τ1ξ1], E[

√
τ2ξ2], . . . , E[

√
τnξn]

)

×

⎛⎜⎜⎜⎝
E[

√
τ1ξ

′

1]

E[
√
τ2ξ

′

2]

...

E[
√
τnξ

′

n]

⎞⎟⎟⎟⎠
= Σ + HH′ (C.1)

is also positive definite, where Σ =
∑n

i=1τiΣi and H =[
E[

√
τ1ξ1], E[

√
τ2ξ2], . . . , E[

√
τnξn]

]
. We can also get the inverse

matrix of
∑n

i=1τiE[ξiξ
′

i ] as follows,[ n∑
i=1

τiE[ξiξ ′

i ]

]−1
= Σ−1

−Σ−1H(In + H′Σ−1H)−1H′Σ−1, (C.2)

where In is an n-dimension identical matrix. Moreover, we have

H′

[
Σ−1

−Σ−1H(In + H′Σ−1H)−1H′Σ−1
]
H

= H′Σ−1H − H′Σ−1H(In + H′Σ−1H)−1H′Σ−1H

= H′Σ−1H(In + H′Σ−1H)−1
[
In + H′Σ−1H − H′Σ−1H

]
= H′Σ−1H(In + H′Σ−1H)−1. (C.3)

Because Σi > 0 for every j = 1, 2, . . . ,m, then Σ > 0 and
(In + H′Σ−1H) > H′Σ−1H > 0. Further, (H′Σ−1H)−1 > (In +

H′Σ−1H)−1 > 0. Notice that

H′Σ−1H
[
(H′Σ−1H)−1

− (In + H′Σ−1H)−1]
=
[
(H′Σ−1H)−1

− (In + H′Σ−1H)−1]H′Σ−1H

= In − H′Σ−1H(In + H′Σ−1H)−1, (C.4)

so we obtain

In − H′Σ−1H(In + H′Σ−1H)−1 > 0. (C.5)

Also

(
√
τ1,

√
τ2, . . . ,

√
τn)
[
In − H′Σ−1H(In + H′Σ−1H)−1]

×

⎛⎜⎜⎜⎝
√
τ1

√
τ2
...

√
τn

⎞⎟⎟⎟⎠ > 0, (C.6)

which means that

(
√
τ1,

√
τ2, . . . ,

√
τn)H′Σ−1H(In + H′Σ−1H)−1

⎛⎜⎜⎜⎝
√
τ1

√
τ2
...

√
τn

⎞⎟⎟⎟⎠

< (
√
τ1,

√
τ2, . . . ,

√
τn)In

⎛⎜⎜⎜⎝
√
τ1

√
τ2
...

√
τn

⎞⎟⎟⎟⎠
=

n∑
i=1

τi = 1.

Finally,

0 <

[
n∑

i=1

τiE[ξi]

]′[ n∑
i=1

τiE[ξiξ ′

i ]

]−1 [ n∑
i=1

τiE[ξi]

]
= (

√
τ1,

√
τ2, . . . ,

√
τn)H′Σ−1H(In + H′Σ−1H)−1

×

⎛⎜⎜⎜⎝
√
τ1

√
τ2
...

√
τn

⎞⎟⎟⎟⎠ <

n∑
i=1

τi = 1.

And we complete the proof.

Appendix D. Proof of Lemma 4.3

Proof. Notice that

Bt (j) =

[
n∑

i=1

(
ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k))

)
E[Pt (i, j)]

]′

·

[
n∑

i=1

ϕ
j
t (i)

(
ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k))

)

E[Pt (i, j)P′

t (i, j)]

]

·

[
n∑

i=1

ϕ
j
t (i)

(
ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k))

)
E[Pt (i, j)]

]

+

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k). (D.1)

So let

ϱj(t, i) = ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k)) ,
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then (D.1) can be rewritten as

Bt (j) =

[
n∑

i=1

ϱj(t, i)E[Pt (i, j)]

]′ [ n∑
i=1

ϱj(t, i)E[Pt (i, j)P′

t (i, j)]

]

×

[
n∑

i=1

ϱj(t, i)E[Pt (i, j)]

]

+

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k). (D.2)

According to (14), we have

0 < Bt (j) =

[
n∑

i=1

ϱj(t, i)E[Pt (i, j)]

]′ [ n∑
i=1

ϱj(t, i)E[Pt (i, j)P′

t (i, j)]

]

×

[
n∑

i=1

ϱj(t, i)E[Pt (i, j)]

]

+

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k)

<

n∑
i=1

ϱj(t, i) +

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k)

=

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k) (1 − Bt+1(k))

+

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k)Bt+1(k)

=

n∑
i=1

ϕ
j
t (i)

m∑
k=1

θt (i, k) = 1. (D.3)

Therefore, we complete the proof.
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